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Abstract 

We present a novel approach for computing a com­

pact and highly discriminant biometric signature for 3D 

face recognition using linear dimensionality reduction tech­

niques. Initially, a geometry-image representation is used 

to effectively resample the raw 3D data. Subsequently, 

a wavelet transform is applied and a biometric signa­

ture composed of 7,200 wavelet coefficients is extracted. 

Finally, we apply a second linear dimensionality reduc­

tion step to the wavelet coefficients using Linear Discrim­

inant Analysis and compute a compact biometric signa­

ture. Although this biometric signature consists of just 

57 coefficients, it is highly discriminant. Our approach, 

UR3D-C, is experimentally validated using four publicly 

available databases (FRGC vi, FRGC v2, Bosphorus and 

BU-3DFE). State-of-the-art peiformance is reported in all 

of the above databases. 

1. Introduction 
During the last decade, several 3D face recognition 

methods have claimed to have overcome the limitations of 
2D face recognition. However, only a few of these methods 
have been thoroughly validated. This lack of validation 
was mainly attributed to the limited availability of publicly 
available 3D facial databases. In the past few years several 
such databases were released, alleviating this problem. 
The 3D facial databases currently available, consist of 
thousands of datasets that include a variety of facial 
expressions, pose variations and even partial occlusions. 

In this paper, we propose a novel 3D face recognition 
method, UR3D-C, and validate it using the most challeng­
ing databases available: FRGC vI, FRGC v2, Bosphorus 
and BU-3DFE. These databases, with the exception of 
FRGC vI, are considered very challenging as they each 
have several thousand datasets. Moreover, they can be 
considered complementary as they have different character­
istics (e.g., FRGC v2 has a large number of subjects while 
Bosphorus has a large variety of facial expressions). 
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The main contribution of this paper is the introduction of 
a biometric signature for 3D face recognition that is very 
compact (only 57 coefficients), and highly discriminant 
(state-of-the-art performance in challenging databases). In 
fact, it outperforms all previously published methods in 
both efficiency and accuracy. 

To extract the geometry images from the raw 3D data, 
we follow the subdivision-based deformable model frame­
work, UR3D, proposed by Kakadiaris et al. [7]. In UR3D, 
after each geometry image is extracted, a pair of biometric 
signatures is computed based on two separate wavelet 
transforms (Haar and Pyramid). In order to measure the 
similarity between a probe and a gallery, the pairs of 
signatures are compared (using a different metric for each 
type of signature) and the results are fused. In UR3D-C, we 
derive an initial signature composed of 7,200 coefficients 
by applying the Haar wavelet transform. Subsequently, we 
apply the LDA algorithm proposed by Yu and Yang [18]. 
The result is a compact biometric signature of only 57 
coefficients that is used to measure the similarity between 
a probe and a gallery image. Recently, we proposed 
UR3D-B [10], an extension to UR3D, consisting of a 
feature selection step (Gauss-Markov Posterior Marginals) 
that reduces the dimensionality of the biometric signature 
to 360 coefficients. By applying LDA to the compact 
signatures, state-of-the-art performance on FRGC v2 was 
obtained. UR3D-C is more efficient and more accurate 
when compared to [7] and [I 0] (discussed in detail in 
Section 3.3). 

Additional state-of-the-art methods that use FRGC v2 
for experimental validation were proposed by Queirolo et 

al. [14], Faltemier et al. [5] and AI-Osaimi et al. [I]. For a 
broader survey of the field the reader is referred to Bowyer 
et al. [3] and Chang et al. [4]. Queirolo et al. [14] used 
Simulated Annealing to match facial parts derived from 
a segmentation step. Subsequently, the individual scores 
were combined using a sum rule to compute the final score. 
Faltemier et al. [5] considered 38 regions on the face and 
compared the corresponding regions between the probe and 
gallery datasets using the Iterative Closest Point (ICP) al­
gorithm. A voting scheme was then used to fuse the results 
from the individual regions. Finally, AI-Osaimi et al. [1] 
used an expression deformation model to transfer facial ex­
pressions from one dataset to another. A method based on 
Principal Component Analysis (PCA) was then applied to 
compare the datasets. Note that UR3D-C outperforms all 
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Figure 1. Depiction of the algorithmic pipeline of UR3D-C. 

the above methods, as demonstrated in Section 3.3. 

2. Methods 
The basic step of UR3D-C is the application of LDA on 

the wavelet transform of the geometry images. A geometry 
image is the result of the injective mapping of all vertices of 
a 3D object (x, y and z coordinates) to a 2D grid represen­
tation (u, v coordinates) [6]. Thus, a geometry image is a 
regular continuous sampling of a 3D model represented as 
a 2D image, with each u, v pixel corresponding to the orig­
inal x, y, z coordinates. There are several approaches in the 
literature for the creation of geometry images. In this paper, 
we use the approach presented by Kakadiaris et al. [7]. The 
algorithmic pipeline, which is based on UR3D [7], is briefly 
described in Section 2.1 while the novel high-dimensional 
LDA approach is discussed in Section 2.2. 

2.1. Overview 
The main step involves fitting an Annotated Face Model 

(AFM) to the raw 3D data using a subdivision-based de­
formable model framework [7]. The geometry images are 
then created from the fitted AFM. The basic steps of this 
pipeline are: 

1. The raw 3D data obtained by the optical or laser scan­
ner are converted to a polygonal representation. Sim­
ple filters (e.g., smoothing, median cut) are applied to 
the data to alleviate scanner specific problems (e.g., 
holes or noise). 

2. The raw 3D data are registered to the AFM using a 
coarse-to-fine approach: an initial registration is pro­
vided by the ICP algorithm [2] while a more accurate 
registration is provided by the Simulated Annealing al­
gorithm [16]. 
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3. The AFM is fitted to the registered data to acquire 
the shape of the individual. For the fitting, a de­
formable model framework [9] is used that is based on 
subdivision surfaces (specifically, Loop's subdivision 
scheme [8]). 

4. A geometry image is created from the fitted AFM. This 
is possible since the AFM has a native injective map­
ping from R3 to R2 (this property is not violated by 
the fitting process). The first derivative of the geom­
etry image is also computed, thus creating a normal 
image of similar size. 

5. Each of the geometry and normal images has a 
spatial resolution of 256 x 256 and 3 channels 
(393,216 coefficients). A level-four Haar wavelet 
transform is applied to the images, producing 256 
wavelet packets of size 16 x 16. Only the 40 most dis­
criminant packets are kept, resulting in 61,440 coeffi­
cients. Using a selection mask derived from the AFM, 
only 30 out of the 256 coefficients inside each packet 
are retained (the remaining are disregarded as they are 
considered less useful for biometric purposes). The 
resulting biometric signature consists of 7,200 coeffi­
cients (2 x 3 x 40 x 30). 

6. With the application of high-dimensional LDA, the fi­
nal biometric signature's size is reduced from 7,200 to 
just 57 coefficients, as presented in Section 2.2. 

2.2. Linear Dimensionality Reduction 
The "weighted" Ll norm, which is the metric used to 

compare pairs of wavelet signatures, can be written as: 

n 
d(g, p) = L aiilgi -Pil = I A(g -P)ll' (1) 

i=l 

where g and P are n-dimensional vectors, A is a diagonal 
n x n matrix whose elements are the wavelet weights as­
signed to each coefficient (it contains three weights for a 
coefficient assigned to a pixel), and I . 11 represents the Ll 
norm. If we relax the constraint over A to be diagonal, and 
consider any m x n, 1 < m < n matrix instead, we will, at 
the same time, increase the degrees of freedom of A from 
n to n x m, and reduce the dimensionality of the data from 
n to m. Given a set of training data T = {(Xi' Yi)}�l' 
where N is the number of samples in the database, Xi E Rn 

are n-dimensional biometric signatures, Yi E {I, 2, ... , K} 
are the labels assigned to the signatures (the identifier of 
each subject), LDA provides a set of discriminant directions 
{w;}�ll 

that maximize the Fisher's criterion: 

wTBw 
arg max T ' 

wERn W Ww (2) 
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Figure 2. Verification performance as a function of the number of 

discriminant vectors used for recognition. 

where K � N is the number of subjects in the training 
set, B is the between class scatter matrix, and W is the 
within class scatter matrix. It has been shown that using 
only the leading discriminant directions can often improve 
the generalization performance of the classifier [] 9]. In 
the context of face recognition, this suggests that there 
exists a subset of discriminant directions S = {Wi}�=l that 
captures the most discriminant information to recognize 
different identities, while its complement S' = {Wd�t�l 
captures the discriminant information related to the training 
set. Thus, using S' for recognition leads to over-fitting. 
This phenomenon is illustrated in Fig. 2. 

We divided the FRGC v2 database into two subsets: 
Ti (70 % of the subjects) and T2 (30 % of the subjects), 
computed the K -1 discriminant vectors from Ti using 
LDA (K = 326) and projected T2 on the first t vectors, 
o < t < K. We then defined the distance between any two 
samples in T2 as the L2 distance between their projected 
t-dimensional vectors. Next, we computed the verification 
rate at 0.001 FAR on Ti and T2 for all values of t. The ver­
ification rate on Ti is the in-sample verification rate and the 
verification rate on T2 is the estimated out-oj-sample verifi­
cation rate. Note that the out-of-sample verification rate de­
creases as a function of the number of discriminant vectors 
after reaching its maximum at t = 20, while the in-sample 
verification rate remains at its maximum up to 213 vectors, 
after which the performance decreases slightly. This sug­
gests that the first 20 vectors capture the most discriminant 
information for face recognition, while the rest capture in­
formation about the training set. The procedure for com­
puting the t discriminant vectors is described in Algorithm 
1. 

3. Experimental Results 
In the following experiments, we will follow the method­

ology described in Section 2.2 to define the set of discrim­
inant vectors and the number t of vectors to be used for 
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Algorithm 1 LDA-Train 

Require: A training set T {(Xi, Yi)}�l of 
n-dimensional vectors (defined by the selected 
wavelet coefficients, as described in Section 2.1) 
labeled according to subject identity, Yi E {I, 2, ... , K} 

1: Split T into two subsets Ti, T2 such that each subject 
in T appears in Ti or T2 but not both 

2: Let Kl and K2 be the number of subjects in Ti and T2 
respectively 

3: Apply LDA to Ti, and let A be the resulting 

(K 1 -1) x n projection matrix 
4: For each 0 < r < K 1, define Ar as the r x n matrix 

formed using the first r rows of A 
5: forallrE{1,2, ... ,K1-l}do 
6: Compute the projection Xi = ArXi for all vectors 

Xi E T2 
7: Compute the verification rate vr at 0.001 FAR on 

T2 using the projected r-dimensional vectors Xi as 
biometric signatures and the L2 norm as metric 

8: end for 
9: Set t = arg maxr{ vr} 

10: return (t, At) 

(a) (b) 

(c) (d) 
Figure 3. Example datasests from databases: (a) FRGC vi, (b) 

FRGC v2, (c) Bosphorus and (d) BU-3DFE. 

recognition. 

3.1. Databases 
To thoroughly validate the performance of UR3D-C we 

used four publicly available databases. Example datasets 
from each of these databases are depicted in Fig. 3 while 
their description is given below. 



• FRGC vI: The FRGC vI database [] 1] contains a to­
tal of 943 range images acquired in 2003. These data 
were obtained from 275 subjects, all exhibiting neutral 
expressions. The hardware used to acquire these range 
data was a Minolta Vivid 900 laser range scanner, with 
a resolution of 640 x 480. 

• FRGC v2: The FRGC v2 database [13, ]2] contains 
a total of 4,007 range images, acquired between 2003 
and 2004. These data were obtained from 466 subjects 
and contain various facial expressions (e.g., happiness 
and surprise). 

• Bosphorus: The Bosphorus database [15] consists of 
3D facial data with facial expressions, pose variations 
and partial occlusions. To acquire these data, an In­
speck Mega Capturor II 3D was used. For the ex­
periments in this paper, only the frontal datasets that 
did not have any occlusions were used. As a result, 
there were a total of 2,902 data sets from 105 subjects. 
We call this subset HI. Compared to FRGC v2, this 
database has a larger variety of facial expressions but 
a smaller number of subjects. 

• BU-3DFE: The BU-3DFE database [17] contains a to­
tal of 2,500 3D datasets from 100 subjects. Each sub­
ject has 25 different facial expression. The database 
consists of 56 % female and 44 % male subjects, with 
age ranging from 18 to 70 years and a variety of eth­
nic/racial ancestries. 

3.2. Cross Database Validation 
Although cross validation is the standard way to as­

sess the performance of systems that require training, using 
cross validation would make the results not directly com­
parable to other face recognition systems that, for exam­
ple, reported their performance on FRGC v2. Therefore, 
we tested the performance using each database for training 
and testing. The results are summarized in Tables 1 and 
2. In Table 1, we report the rank-l recognition rate, while 
in Table 2, we report the verification rate at 0.001 FAR for 
each database by taking the first sample of each subject (in 
lexicographical order) as gallery and the rest as probes. 

3.3. Face Recognition Grand Challenge Experi­
ments 

To compare UR3D-C with the state-of-the-art, we used 
the experiments defined for FRGC v2 during the Face 
Recognition Grand Challenge (FRGC). To this end, we 
report the verification rate at 0.001 FAR for experiments I, 
II and III using each of the available databases for training 
(Table 3). Additionally, the rank-l recognition rate is also 
reported. The best results are obtained by training with HI. 
Since different databases exhibit different characteristics, it 
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Rank-I, First vs. Rest 

Training 

FRGC vI BU-3DFE B1 FRGC v2 

FRGC vI lOO.O % 96.7 % 99.9% lOO.O % 

Testing 
BU-3DFE 97.3 % 99.9 % 99.7 % 99.3 % 

B1 96.4 % 98.2 % 99.6% 98.6% 

FRGC v2 98.1 % 96.1 % 97.9% 99.7 % 

Table 1. Rank 1 recognition rate using each database under consid­

eration for training and testing. The first sample of each individual 

forms the gallery set and the rest of the samples are used as probes. 

Verification Rate at 0.001 FAR, First vs. Rest 

Training 

FRGC vI BU-3DFE B1 FRGC v2 

FRGC vI 99.7 % 95.7 % 99.1 % lOO.O % 

Testing 
BU-3DFE 91.3 % 99.1 % 97.2 % 97.0% 

B1 89.6% 93.8 % 96.9 % 94.1 % 

FRGC v2 97.5 % 95.5 % 97.5 % 99.7 % 

Table 2. Verification Rate at 0.001 FAR using each database under 

consideration for training and testing. The first sample of each 

individual forms the gallery set and the rest of the samples are 

used as probes. 
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Figure 4. Verification performance on FRGC v2 using the B1 and 

FRGC vI databases for training. 

is natural to expect that the discriminant vectors computed 
using LDA with different databases, captured different 
discriminant information. This information can be com­
bined in different ways to further improve the recognition 
performance. 

The last column of Table 3 summarizes the results ob­
tained by averaging the similarity matrices trained with 
HI and FRGC vI, which corresponds to a signature size 
equal to 57 coefficients. The recognition performance of 
UR3D-C, along with some of the most recently published 
3D-3D face recognition algorithms, is presented in Table 4, 
and the corresponding Receiver Operating Characteristic 
(ROC) curves are depicted in Fig. 4. Note that UR3D-C 
outperforms all previously published methods. 



BU-3DFE FRGC vI B1 
FRGC vI 

+B1 
Signature dimension 21 30 27 57 

ROC I 95.4 % 96.5 % 97.4 % 9S.1 % 

ROC II 95.4 % 96.4 % 97.3 % 9S.0% 

ROC III 95.4 % 96.1 % 97.2 % 97.9 % 

Rank-1 96.1 % 9S.1 % 97.9 % 99.0% 

Table 3. Recognition performance for all FRGC v2 experiments 

and rank-1 recognition rate using different training sets. Different 

training sets result in different signature length. 

Method ROC I ROC II ROC III Rank-1 

UR3D-C 9S.1 % 9S.0% 97.9 % 99.0% 

UR3D-B [10] (2011) 97.5 % 97.1 % 96.S % -

Queiro10 et al. [14] (2010) - - 96.6% 9S.4 % 

UR3D [7] (2007) 97.3 % 97.2% 97.0% 97.0% 

Faltemier et al. [5] (200S) - - 94.S % 97.2% 

AI-Osaimi et al. [I] (2009) - - 94.1 % 96.5 % 

Table 4. Recognition performance on FRGC v2 of UR3D-C com­

pared against the most recently published 3D-3D face recognition 

methods. 

4. Discussion 
Some important aspects of our Dimensionality Re­

duction approach must be mentioned. At first, it might 
appear too simplistic to use a linear transformation for 
dimensionality reduction, since there are several non-linear 
approaches reported in the literature. However, Fig. 2 and 
Tables 1 and 2 demonstrate that a nearly perfect in-sample 
performance (i.e., training and testing on the same database) 
can be obtained using a linear transformation, which means 
that the training set was nearly linearly separable, and 
therefore, the application of non-linear techniques is not 
necessary under these conditions. Furthermore, the use of 
more sophisticated techniques bears the risk of over-fitting 
the training set. 

Although the homoscedasticity assumption (i.e., the 
within covariance matrix is the same for all classes) used in 
LDA may be unreasonable, relaxing this assumption is not 
likely to improve the recognition performance. The reason 
is that our classification problem is conceptually different 
from other classification tasks. In a standard classification 
problem, the categories of the data are defined in advance, 
so that the variability within each class may be used to 
improve the classification accuracy. However, in face 
recognition, we are only applying LDA for dimensionality 
reduction. This is because the categories (i.e., the subject 
identities) and even the cardinality of the categories are 
not known in advance. In addition, those categories are, 
in general, different from the categories in the training set. 
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Thus, using the variability of the categories in the training 
set (i.e., the variability associated to each subject) will not 
provide information about the variability of a subject out­
side the training set. Therefore, allowing heteroscedasticity 
is more likely to cause over-fitting. 

The problem of face recognition can be formulated as 
a binary classification problem, in which the objective 
is to distinguish between pairs of faces corresponding 
to the same individual and pairs of faces corresponding 
to different individuals. However, this formulation is 
problematic because it is highly unbalanced (there are 
many more negative examples than positive examples). 
Under this formulation, it is more appropriate to use a 
non-linear classifier and a dimensionality reduction of the 
biometric signature (e.g., a signature composed of only 360 
coefficients as proposed in [10]) is mandatory in order to 
apply more sophisticated classifiers. However, in this paper 
we demonstrated that it is possible to use a larger signature, 
composed of 7,200 coefficients, since LDA algorithms 
specially designed for high-dimensional data are readily 
available [18]. 

Finally, notice that the resulting biometric signature, 
composed of 57 coefficients (456 bytes using double pre­
cision floating point values), allows us to compare a large 
number of signatures in a short period of time, making the 
identification in large databases very efficient in terms of 
speed and storage (it is possible to store all the biometric 
signatures of the FRGC v2 database in less than 2 MB). In 
our experiments, we are able to perform 999,504 compar­
isons per second using an AMD Opteron processor at 2.1 
GHz. 

5. Conclusion 

A 3D face recognition method, UR3D-C, using linear di­
mensionality reduction was presented in this paper. It uses 
an automated algorithmic pipeline to derive a wavelet trans­
form from geometry images. LDA is applied to a train­
ing dataset and subsequently used to compress the biomet­
ric signature to just 57 coefficients. UR3D-C was experi­
mentally validated using four publicly available databases. 
The importance of LDA's training was thoroughly inves­
tigated as the performance was computed for all possible 
combinations of training and test databases (sixteen com­
binations for the four databases). Finally, the verification 
rates at 0.001 FAR in the three standard experiments de­
fined for FRGC v2 are the highest to date (98.1 %,98.0 % 
and 97.9 %, respectively). 
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