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Abstract—The matching score distributions produced by dif-
ferent biometric modalities are heterogeneous. The same is true
for the matching score distributions obtained for different probes.
Both of these problems can be addressed by score normalization
methods that standardize the corresponding distributions. In our
previous work we demonstrated that, in the case of multi-sample
galleries, the matching score distributions are also heterogeneous
between different subsets of matching scores obtained for the
same probe. In this paper, we use this result to propose a
rank-based score normalization framework for multi-biometric
score fusion. Specifically, in addition to normalizing the matching
scores produced for each biometric modality independently, we
propose to further join them to form a single set. This set is
then partitioned to subsets using a rank-based scheme. The
theory of stochastic dominance demonstrates that the rank-
based scheme imposes the distributions of the subsets to be
ordered. Hence, by normalizing the matching scores of each
subset independently, better normalized scores are produced.
The normalized scores can be fused using any fusion rule.
Experimental results using face and iris data from the CASIA-
Iris-Distance database demonstrate the improvements obtained.

Index Terms—Score Normalization, Score Fusion, Multi-
Biometric Systems

I. INTRODUCTION

Biometric systems use measurable biological and behavioral
characteristics to perform automated recognition. Some of the
most popular biometric traits are the face, iris, voice, and fin-
gerprints. Systems that rely on a single trait are usually called
unimodal biometric systems. The recognition performance of
such systems is usually degraded for several reasons, such as
lack of uniqueness and noisy data. Multi-biometric systems,
also known as multimodal biometric systems, address these
problems by utilizing multiple modalities. That is, data from
two or more biometric traits are used for each subject (e.g.,
face and iris). Fusing the information obtained from the differ-
ent modalities is not a trivial problem. On the contrary, it has a
significant impact on the overall recognition performance. The
most common way to address this problem is to perform fea-
ture level or matching score level fusion. Feature level fusion
methods utilize more information compared to the matching
score level fusion approaches. However, they are computa-
tionally expensive and require large training datasets. On the
other hand, score level fusion methods rely on matching scores
(i.e., one number for each pairwise comparison) and thus they
are very efficient. In addition, the matching score distributions
usually provide sufficient information to perform effective

fusion. In most cases though, the distributions produced by
the different modalities are heterogeneous, which complicates
the fusion process. There are two ways to address this prob-
lem. First, some methods utilize the training data to learn
optimal weights for the matching scores produced by each
modality. Second, other approaches normalize the matching
score distributions of each modality independently. As a result,
the corresponding distributions become homogeneous and the
fusion process is simplified. Score normalization techniques,
though, go beyond that. Each biometric sample is subject
to distortions during the data acquisition. Consequently the
matching score distributions obtained for different probes are
heterogeneous. This phenomenon degrades the performance of
both unimodal and multi-biometric systems. By normalizing
the matching scores obtained for each probe this problem is
alleviated and better performance is obtained. In our previous
work [1], [2], we focused on unimodal biometric systems with
multi-sample galleries. We demonstrated that the matching
scores obtained for a single probe can be partitioned into
subsets in such a way that the corresponding distributions are
heterogeneous. The theory of stochastic dominance guarantees
this result. Hence, by normalizing the matching scores of
each subset individually, better normalized scores are obtained
on a per probe basis. We named that method RBSN (i.e.,
Rank-Based Score Normalization) and some of its advantages
include: (i) it can improve the performance of any score
normalization method by utilizing the existing information
more effectively; (ii) it improves the recognition performance
on a per probe basis (i.e., the transformation of the scores
is non-linear); and (iii) it increases the discriminability of
the matching scores across probes. An overview of RBSN is
provided in Fig. 1.

In this paper, we extend this approach to the case of multi-
biometric score fusion. Existing approaches normalize the
matching scores of each modality independently and then
employ a fusion rule. We argue that, as in the case of multi-
sample galleries, we can utilize the multiple matching scores
produced for each subject by the different modalities more
effectively. In particular, the first step normalizes the matching
score of each modality independently. This step alleviates the
differences of the matching score distributions between the
modalities. Then, we propose to join the normalized score
sets to form a single set and employ RBSN to produce
“twice” normalized scores. This step utilizes the information
from the multiple matching scores obtained for each subject
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Fig. 1: Overview of the Rank-Based Score Normalization
framework. The notation S(X1, pi) is used to denote the score
obtained by comparing a probe pi to the biometric sample 1
of a gallery subject labeled X . [1], [2]

more effectively. Finally, the resulting scores can be fused
using any fusion rule. We call the proposed framework Multi-
Rank-Based Score Normalization (MRBSN). An overview of
MRBSN is provided in Fig. 2. Experimental results using
face and iris data from the CASIA-Iris-Distance database [11]
demonstrate the benefits of multi-biometric fusion.

The rest of this paper is organized as follows: Sec. II reviews
the fusion rules and score normalization techniques used in
our experimental evaluation; Sec. III offers an overview of
the theory of stochastic dominance and the rank-based score
normalization framework and describes the proposed multi-
biometric rank-based score normalization; Sec. IV presents the
experimental results; and Sec. V concludes the paper.

II. RELATED WORK

In this section, we review the methods used in our experi-
mental evaluation. For a comprehensive overview of score nor-
malization methods and score fusion rules for multi-biometric
systems we refer the readers to Jain et al. [3].

A. Score Normalization Techniques

Score normalization techniques make the matching score
distributions homogeneous between: (i) different biometric
samples (i.e., probes), (ii) different modalities, and (iii) differ-
ent subsets of matching scores obtained for the same biometric
sample.

Z-score: This method is very easy to implement and usually
yields significant improvements in terms of recognition per-
formance. Therefore, it is widely used and its properties are
well examined. Specifically, Z-score relies on second order
statistics. That is, it relies on the assumption that the location
and scale parameters of the matching score distribution can be
approximated by the mean and standard deviation in a satisfac-
tory manner. When the underlying distribution is Gaussian, the
Z-score transformation can retain the shape of the distribution.
However, the normalized scores are not bounded. Moreover, Z-
score is sensitive to outliers as the mean and standard deviation
estimators are not robust to observations with extreme values.

Fig. 2: Overview of the Multi-Rank-Based Score Normaliza-
tion framework. The capital letters X, Y, and Z denote the
labels of three different subjects, while the superscripts F and I
denote face and iris biometric traits, respectively. The notation
S(XF , pi) is used to denote the matching score obtained by
comparing a probe pi to the facial biometric sample of X . The
notations SN (XF , pi) and SN (XF , pi) denote the normalized
and “twice” normalized scores, respectively.

Finally, since this is a linear operation, it does not change
the ordering of matching scores obtained for a single probe.
Hence, it does not affect the rank-k recognition performance.

W-score: This score normalization method was proposed
by Scheirer et al. [4] and normalizes the matching scores
by modeling the tail of the non-match scores distribution.
The normalized scores take values in the interval [0, 1]. This
approach relies on the Extreme Value Theory (EVT). The
necessary conditions to invoke EVT are detailed in Section 3
of Scheirer et al. [4]. The strongest points of this approach are
that it does not make any assumptions about the distribution of
the matching scores and it yields good performance. However,
it is not clear how many non-match scores should be selected
to model the tail of the non-match scores distribution. In
the literature, it is reported that selecting as few as five
scores should be enough for that task. In our experience,
though, using a small number of scores results in discretized
normalized scores. The implication of this fact is that the user
cannot assess the recognition performance at low false accep-
tance rates. On the other hand, if the user selects too many
scores then the necessary conditions to invoke the Extreme
Value Theorem are violated. In addition to the requirement of
selecting the number of non-match scores used to model the
tail of the non-match scores distributions, W-score has another
limitation. It assumes that each matching score corresponds
to a single gallery subject. As a result, it cannot be directly
applied to multi-sample galleries. One possible solution would
be to fuse the scores for each subject before applying W-
score. However, we demonstrate that the rank-based score
normalization framework proposed in our previous work can
naturally extend the use of W-score to multi-sample galleries
and improve its performance.
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B. Fusion Rules

The general problem of combining various classifiers, or
equivalently fusing evidence from multiple measurements, is
an area that has been well studied. The work by Kittler et
al. [5] focuses on the statistical background of such fusion
rules. Even though the corresponding results refer to likelihood
values, these rules are usually applied to matching scores
as well. Specifically, as demonstrated in the literature, these
rules work well whether the user combines multiple matching
scores per subject from a single modality or one matching
score per subject from multiple modalities [6], [1], [2]. In our
experiments, we use the sum rule. Under the assumption of
equal priors the sum rule is implemented by employing the
addition operator. When this assumption is not true the mean
operator is employed instead. Even though this rule makes
restrictive assumptions, it appears to yield good performance
as demonstrated in the relevant literature [5], [3].

III. RANK-BASED SCORE NORMALIZATION FOR
MULTI-BIOMETRIC SCORE FUSION

In this section, we first review the theory of stochastic dom-
inance and the RBSN framework. These two are inseparable
components of the proposed approach. Then, we describe the
MRBSN framework.

A. Stochastic Dominance Theory

The theory of stochastic dominance is a branch of decision
theory. It is most often applied in portfolio analysis for
financial applications. We focus only on the results that help
us support the proposed framework.

Definition: The notation X &FSD Y denotes that X first
order stochastically dominates Y , that is

Pr{X > z} ≥ Pr{Y > z}, ∀z. (1)

This definition implies that the corresponding distributions
will be ordered. The following lemma makes this observation
more clear.

Lemma: Let X and Y be any two random variables, then

X &FSD Y ⇒ E[X] ≥ E[Y ]. (2)

The proof of this lemma can be found in [7]. Figure 1 of
Wolfstetter et al. [7] depicts an illustrative example of first
order stochastic dominance, where F̄ (z) and Ḡ(z) are two
functions such that F̄ (z) &FSD Ḡ(z). It is relatively easy
to show that a first order stochastic dominance relationship
implies all higher orders as well [8]. Moreover, as it has
been implicitly illustrated by Birnbaum et al. [9], this relation
is known to be transitive. Finally, the first order stochastic
dominance is often referred to as stochastic ordering of random
variables.

Key Remarks: If a variable stochastically dominates another
then we can conclude that the corresponding distributions
are going to be ordered (i.e, heterogeneous). In our previous
work, we used this result to illustrate that a rank-based

partitioning of the matching scores for a single probe will
result in subsets of scores with ordered distributions. Hence, by
normalizing the matching scores of each subset independently
the corresponding distributions will become homogeneous and
better normalized scores will be obtained. In this work, the
same idea is adopted for a set of scores obtained for a single
probe but from multiple modalities.

B. Rank-Based Score Normalization

The main idea of RBSN [1], [2] is to partition the set
of matching scores obtained for a single probe into sub-
sets and then normalize the matching scores of each subset
independently. This is a framework that can be used in
conjunction with any score normalization method. It relies on
the assumption that multiple samples per subject are available.
We offer an overview of the steps performed in Algorithm 1.
The notation to be used throughout this paper is as follows:
S: the set of matching scores for a given probe when

compared against a given gallery
Si: the set of matching scores that correspond to the gallery

subject with identity=i, Si ⊆ S
Si,r: the ranked-r score of Si

SN : the set of normalized scores for a given probe
Cr: the rank-r subset,

⋃
r Cr = S

|d|: the cardinality of a set d
U : the set of unique gallery identities
Z: a given score normalization technique

Algorithm 1 Rank-Based Score Normalization

1: procedure RBSN(S =
⋃

i{Si}, Z)
Step 1: Partition S into subsets

2: Cr = {∅},∀r
3: for r = 1 : maxi{|Si|} do
4: for all iεU do
5: Cr = Cr

⋃
Si,r

6: end for
7: end for . (i.e., Cr =

⋃
i Si,r)

Step 2: Normalize each subset Cr

8: SN = {∅}
9: for r = 1 : maxi{|Si|} do

10: SN = SN
⋃
Z(Cr)

11: end for
12: return SN

13: end procedure

For a detailed description of each step of the algorithm we
refer the readers to our previous work [1], [2]. Here, we focus
on some key remarks.

Key Remarks: The subsets Cr obtained from Step 1 include
at most one matching score for each gallery subject. Also, the
theory of stochastic dominance ensures that the corresponding
distributions are ordered. By construction we have that

Sx,i ≥ Sx,j ,∀i ≤ j and ∀x. (3)

Let Xi and Xj be the variables that correspond to Sx,i and
Sx,j (i.e., Ci and Cj), respectively. Hadar and Russell [10]
have demonstrated that this condition is sufficient to conclude
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that Xi &FSD Xj . By invoking the corresponding results
from Sec. III-A, it is clear that, if i 6= j, the density distribu-
tions PXi and PXj will be ordered. Hence, by normalizing
the subsets Cr independently better normalized scores can
be obtained. Even though there are other ways to define
the subsets Cr (e.g., ranking by illumination or pose), only
the rank-based scheme can guarantee that the corresponding
density distributions will be ordered. Moreover, conventional
score normalization methods such as Z-score do not change
the ordering of the scores and therefore do not affect the
rank-1 identification performance. The rank-based framework
addresses this problem as the order of the normalized scores
SN is different from the input matching scores S. Finally,
since the subsets Cr include at most one score per subject,
W-score can be employed without having to first fuse the
matching scores. However, since |Cr| < |S|, less information
is available for the parameter estimation required by some
score normalization techniques (e.g., estimates of the mean
and standard deviation values for Z-score).

Implementation Details: Any ties on the matching scores
can be broken arbitrarily without affecting the final outcome.
Moreover, Alg. 1 can be implemented using parallel program-
ming. For example, the ranking of the matching scores for
each subject can be performed in parallel. In addition, the
matching score contained in each subset can be simultane-
ously normalized as they are independent operations. In real
life applications, the galleries used might include a different
number of samples per subject. Hence, some of the subsets
defined might contain only a few matching scores. In these
cases, it is better not to perform any normalization. We have
found that replacing these scores with Not a Number (NaN)
and ignoring them at a decision level does not affect the
performance. The reason is that this phenomenon is likely to
happen for subsets Cr of a low rank. Hence, the information
omitted is not useful. Finally, there are many factors that affect
the final performance, such as the quality of the input matching
scores, the score normalization technique and fusion rule used,
or the order in which they are applied. In this paper, we always
normalize the matching scores before we fuse them.

C. Multi-Rank-Based Score Normalization

In this section, we first describe the conventional way
of utilizing score normalization methods for intuitive score
fusion, and then we present the proposed MRBSN for multi-
biometric systems.

Without loss of generality, we assume that the system at
hand relies on face and iris biometric traits. We further assume
that only one biometric sample per gallery subject is available
for each modality. The notation SF is used to denote the
set of matching scores obtained by comparing a given probe
with the gallery that comprises facial biometric samples, and
SI is used to denote the set of matching scores obtained
by comparing the probe with the gallery that comprises iris
biometric samples. According to the conventional approach,
each set of matching scores is first normalized with a given
score normalization technique. The corresponding sets with the
normalized scores are denoted SF,N and SI,N , respectively.

Finally, the normalized scores can be fused using any given
fusion operator, such as mean. We argue that by joining the
normalized score sets obtained from different modalities we
define an “artificial” unimodal biometric system with a multi-
sample gallery. As a result, the RBSN algorithm can be utilized
to normalize the scores more effectively. In our example, the
two sets of normalized scores SF,N and SI,N can be joined
to obtain S = SF,N ∪ SI,N . The set S fulfills the required
conditions to employ RBSN as two scores correspond to each
gallery subject. The reason why we use S = SF,N ∪ SI,N

instead of S = SF ∪SI is that the matching score distributions
of SF and SI are already ordered. Hence, the rank-based
scheme would simply partition S to two subsets identical with
SF and SI . The MRBSN implementation is described by Alg.
2. The notation to be used is as follows:
SJ : the set of matching scores obtained for a given

probe using the modality denoted by J
SJ,N : the set of normalized scores for a given probe
S: the set of joined normalized score sets, S =

⋃
J S

J,N

SN2 : the set of “twice” normalized scores
R: a given fusion rule

Algorithm 2 Multi-Rank-Based Score Normalization

1: procedure MRBSN(SJ , Z, R)
Step 1: Normalize each SJ independently

2: for all J do
3: SJ,N = Z(SJ)
4: end for

Step 2: Join SJ,N

5: S =
⋃

J S
J,N

Step 3: Employ RBSN
6: SN2 = RBSN(S,Z)

Step 4: Fuse the “twice” normalized scores
7: SN2 = R(SN2)
8: return SN2

9: end procedure

Step 1: The sets of matching scores obtained for each modal-
ity are normalized independently. Thus, the corresponding
distributions become homogeneous.

Step 2: The sets of normalized scores obtained in Step 1 are
joined to form a single set. As a result, the required conditions
for RBSN are satisfied.

Step 3: The set of joined score sets obtained in Step
2 is normalized by employing RBSN to generate “twice”
normalized scores.

Step 4: The “twice” normalized scores obtained in Step 3
are fused so that one score corresponds to each gallery subject.

Key remarks: The proposed approach implicitly requires
that the rank-based scheme can partition the set of scores
S in a meaningful way. That is, the distributions of the
subsets Cr should be stochastically ordered. For the case
of unimodal biometric systems with multi-sample galleries
this implicit requirement is usually satisfied by the diversity
of the gallery samples. Hence, the implicit requirement of
MRBSN is that the variation due to the multiple samples per
gallery subject is greater than the variation attributed to the
heterogeneous behavior of the matching scores produced by
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Fig. 3: Boxplots of the match and non-match scores used for
each modality. The two boxplots on the left correspond to face
scores, while the two boxplots on the right correspond to iris
scores.

the different modalities. Step 1 minimizes the latter by making
the corresponding score distributions homogeneous.

IV. EXPERIMENTAL RESULTS

In this section, we describe the database used and provide
information about implementation details. Finally, we present
the corresponding experimental results.

CASIA-Iris-Distance Database: The CASIA-Iris-Distance
[11] images were acquired using a long-range multi-modal
biometric image acquisition and recognition system (LMBS)
developed by the CASIA group. The high resolution camera
used enables use of the captured images for both face and
iris recognition. The images were captured in an indoor
environment in a single session. Most of the 142 subjects are
graduate students of the CASIA group. The number of samples
per subject ranges from 10 to 23, resulting in 2,567 images.

Implementation details: The CASIA group provided us
with pairwise distances for the face and iris traits (i.e.,
2 × 3, 296, 028 distances). To transform the distances
into matching scores the following formula was used
score = max(distance)− distance. This way, the scaling of
the score distributions was not altered. The obtained matching
scores lie in the interval [0,max(distance)]. This formula was
applied for the distances of each modality independently. The
corresponding boxplots for the match and non-match scores
are depicted in Fig. 3. As demonstrated, the corresponding
distributions are heterogeneous. The face matching scores
have a higher mean value than the iris matching scores. To
assess the discriminative properties of the two modalities we
computed the corresponding Receiver Operating Characteristic
(ROC) curves. The Area Under the Curve (AUC) obtained for
the face matching scores is 93.48%, while the AUC obtained
for the iris matching scores is 94.17%. Since W-score is not
directly applicable to multi-sample galleries, when needed, the
corresponding matching scores were first fused using the mean
operator. In all cases, 35 matching scores were used to fit the
Weibull distribution. Finally, the matching scores of subsets
Cr with a cardinality less than 10 or with a standard deviation
less than 10−3 were replaced by NaN.

TABLE I: Summary of results for Experiment 1. The values
are reported in the format: mean (standard deviation).

Modality Method Rank-1 (%) AUC (%)

Face

Matching Scores 89.70 (2.31) 96.17 (3.47)
Z-score 89.70 (2.31) 97.76 (0.82)
RBSN:Z-score 90.73 (1.91) 98.29 (0.63)
W-score 89.70 (2.31) 97.73 (0.87)
RBSN:W-score 77.43 (3.66) 98.76 (0.30)

Iris

Matching Scores 92.49 (1.42) 96.97 (0.47)
Z-score 92.49 (1.42) 99.20 (0.27)
RBSN:Z-score 92.13 (1.45) 99.14 (0.27)
W-score 92.49 (1.42) 98.51 (0.40)
RBSN:W-score 84.63 (2.87) 98.87 (0.28)

Fused

Matching Scores 93.34 (1.85) 97.32 (0.71)
Z-score 97.14 (1.06) 99.74 (0.19)
RBSN:Z-score 97.33 (0.90) 99.78 (0.15)
W-score 94.55 (1.72) 99.78 (0.11)
RBSN:W-score 95.93 (1.23) 99.85 (0.07)

Experiment 1: The objectives of this experiment are to
assess the impact of score normalization methods to the recog-
nition performance of: (i) unimodal systems with multi-sample
galleries, and (ii) score fusion for multi-biometric systems
with multi-sample galleries. To this end, 71 subjects were
used to define a gallery and for each subject 5 samples were
selected for each modality. The rest of the biometric samples
were used as probes, which resulted to an open-set problem.
The matching scores were normalized using Z-score, W-score,
RBSN:Z-score, and RBSN:W-score. The score normalization
steps were followed by score fusion in all cases. For example,
the Z-score normalized scores were fused for each modality
independently. To obtain the fused results across modalities a
subsequent fusion step was performed by using the fused nor-
malized scores. In all cases the mean operator was employed.
This process was repeated 50 times. The performance was
computed in terms of: (i) Rank-1 Identification performance
for probes that are part of the gallery; and (ii) AUC for
the corresponding ROC curves. An overview of the obtained
results is reported in Table 1. First, we focus on the unimodal
settings. As demonstrated, the Rank-1 performance for Z-score
and W-score is the same as that of the unprocessed matching
scores. For Z-score, RBSN improves the Rank-1 performance
for face but not for iris. In terms of AUC, it appears that
normalizing the scores always improves the performance. For
Z-score, RBSN improves the AUC for the face but not for the
iris. The comparisons of W-score with RBSN:W-score are not
considered because W-score cannot be applied to multi-sample
galleries and the matching scores had to be fused before
they are normalized. Fusing the matching scores appears to
improve the performance for both Rank-1 and AUC, as higher
values compared to both the face and iris settings are obtained.
Furthermore, normalizing the scores with either Z-score or
W-score results in improved performance compared to the
unprocessed matching scores. Finally, RBSN:Z-score yields
further improvements. In other words, the evidence indicates
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TABLE II: Summary of results for Experiment 2. The values
are reported in the format: mean (standard deviation).

Modality Method Rank-1 (%) AUC (%)

Face
Matching Scores 83.01 (2.38) 93.06 (1.09)
Z-score 83.01 (2.38) 95.27 (1.28)
W-score 83.01 (2.38) 95.27 (1.25)

Iris
Matching Scores 81.17 (2.32) 93.88 (0.79)
Z-score 81.17 (2.32) 96.75 (0.71)
W-score 81.17 (2.32) 95.75 (0.83)

Fused

Matching Scores 86.93 (1.96) 95.06 (1.04)
Z-score 90.04 (1.64) 98.36 (0.62)
MRBSN:Z-score 90.01 (1.72) 98.58 (0.51)
W-score 85.58 (1.99) 98.84 (0.38)
RBSN:W-score 85.53 (1.96) 98.53 (0.41)

that the normalized scores produced by RBSN are of better
quality for the task of multi-biometric fusion.

Experiment 2: The objective of this experiment is to assess
whether the proposed MRBSN framework can produce better
normalized scores for the task of fusion in multi-biometric
systems. To this end, 71 subjects were used to define a
gallery, and for each subject one sample was selected for
each modality. The remaining biometric samples were used as
probes, which resulted in an open-set problem. The matching
scores were normalized using Z-score, W-score, MRBSN:Z-
score, and MRBSN:W-score. In all cases the mean operator
was employed. This process was repeated 50 times. As in
experiment 1, the performance was computed in terms of
Rank-1 Identification and AUC for the corresponding ROC
curves. An overview of the obtained results is reported in Table
2. For the face and iris modalities, both score normalization
methods appear to improve the baseline performance. For
the multi-biometric scenario, Z-score appears to improve the
performance of both AUC and Rank-1. W-score appears to
improve the AUC performance as well, but this is not the case
for Rank-1. According to our understanding, the normalized
scores produced by Step 1 of Alg. 2 are homogeneous and
thus the rank-based scheme does not work as well as it does
for the case of multi-sample galleries for unimodal systems.
Nevertheless, we computed the Verification Performance of Z-
score, MRBSN:Z-score, W-Score, and MRBSN:W-score for
a fixed False Acceptance Rate (FAR) value. Specifically,
we set FAR equal to 10−2 because for lower values W-
score becomes unstable (see Sec. II). The obtained mean
and standard deviation values are 90.90% (1.81%), 91.08%
(1.74%), 85.46% (2.12%), and 86.29% (1.94%), respectively.
The verification rate (VR) values were used to perform one-
sided, non-parametric Wilcoxon Signed-Rank tests. The null
hypothesis was set to H0: the MRBSN:Z(W)-score and Z(W)-
score median VRs are equal, and the alternative to Ha: the
MRBSN:Z(W)-score median VR is larger than the Z(W)-score
median VR. The Bonferonni correction was used to ensure that
the overall statistical significance level (i.e., a = 5%) is not
overestimated due to the multiple tests performed. That is, the
statistical significance of each individual test was set to a

m ,

where m is the number of tests performed (i.e., m = 2). The
corresponding p-values obtained are 4.7∗10−3 for Z-score and
1.5∗10−9 for W-score, respectively. Hence, the improvements
obtained appear to be statistically significantly better.

V. CONCLUSION

In this paper, we proposed a rank-based score normalization
framework for multi-biometric score fusion. Our approach: (i)
normalizes the matching score from each modality indepen-
dently; (ii) joins the normalized score set; (iii) defines subsets
of scores using a rank-based scheme; and (iv) normalizes the
matching scores of each subset independently. A statistically
significantly better verification rate was obtained for both Z-
score and W-score when the proposed framework was em-
ployed. However, the Rank-1 Identification Rate and the Area
Under the Curve for the corresponding ROC curves appear to
be comparable with the conventional approach.
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