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Abstract—In this paper, a human behavior recognition method using multimodal features is presented. We focus on modeling individual
and social behaviors of a subject (e.g., friendly/aggressive or hugging/kissing behaviors) with a hidden conditional random field (HCRF)
in a supervised framework. Each video is represented by a vector of spatio-temporal visual features (STIP, head orientation and
proxemic features) along with audio features (MFCCs). We propose a feature pruning method for removing irrelevant and redundant
features based on the spatio-temporal neighborhood of each feature in a video sequence. The proposed framework assumes that
human movements are highly correlated with sound emissions. For this reason, canonical correlation analysis (CCA) is employed
to find correlation between the audio and video features prior to fusion. The experimental results, performed in two human behavior
recognition datasets including political speeches and human interactions from TV shows, attest the advantages of the proposed method
compared with several baseline and alternative human behavior recognition methods.

Index Terms—Hidden conditional random fields, audio-visual synchronization, multimodal fusion, canonical correlation analysis,
human behavior recognition.
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1 INTRODUCTION

R ECOGNIZING human behaviors from video se-
quences is a challenging task [1], [2]. A behavior

recognition system may provide information about the
personality and psychological state of a person. Its appli-
cations vary from video surveillance to human-computer
interaction. Human behavior is often expressed as a com-
bination of non-verbal multimodal cues such as gestures,
facial expressions and auditory cues. The correlation
between cues from different modalities has been shown
to improve recognition accuracy [3]–[5].

The problem of human behavior recognition is chal-
lenging for several reasons. First, constructing a visual
model for learning and analyzing human movements
is difficult. Second, the fine differences between similar
classes and the short time duration of human move-
ments make the problem difficult to address. In addi-
tion, annotating behavioral roles is time consuming and
requires knowledge of the specific event. The variation
of appearance, lighting conditions and frame resolution
makes the recognition problem amply challenging. Fi-
nally, the inadequate benchmark datasets pose a chal-
lenge.

When attempting to recognize human behaviors, one
must determine the kinematic states of a person. From
psychological point of view, human behaviors may be
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classified in three types: behavioral, cognitive and social
[6]. Our goal is to understand not only social behaviors
(e.g., relationships and interactions between people such
as hugging or kissing) but also individual behaviors
(e.g., expression of personal feelings such as aggressive-
ness or friendliness).

Factors that can affect human behavior may be de-
composed into several components including emotions,
moods, actions and interactions with other people.
Hence, the recognition of complex actions may be crucial
for understanding human behavior. Recognizing human
actions that correspond to a specific emotional state
of a person or an affective label such as boredom, or
kindness, may help understand social behaviors. The
task of learning human behaviors is to identify the
psychological state or the social activities of a person
taking place in the surroundings [7]. Several affective
computing methods [8], [9] used semantic annotations
in terms of arousal and valence to capture the under-
lying affect from multimodal data. However, obtaining
affective labels for real world data is a challenging task
[10] and it may lead to biased representation of human
behaviors.

The dimensionality of audio and visual data poses
significant challenges to audio-visual analysis. Video fea-
tures are much more complex and high dimensional than
audio, and thus techniques for dimensionality reduction
play an important role [11]. In the literature, there are
two main fusion strategies, which can be used to tackle
this problem [3], [12]. The early fusion or fusion at the fea-
ture level, combines features from different modalities,
usually by reducing the dimensionality of features from
each modality and creating a new feature vector that
represents the individual. Canonical correlation analysis
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(CCA) [13] was widely studied in the literature as an
effective way for fusing data at feature level [14], [15].
The advantage of early fusion is that it yields good recog-
nition results when the different modalities are highly
correlated, since only one learning phase is required. On
the other hand, the difficulty of combining the different
modalities may lead to the domination of the strongest
modality.

The second category of methods, which is known
as late fusion or fusion at the decision level, combines
several probabilistic models to learn the parameters of
each modality separately. Then all scores are combined
together in a supervised framework yielding a final deci-
sion score [16]. The individual strength of each modality
may lead to better recognition results. However, this
strategy is time consuming and requires more complex
supervised learning methods, which may cause a poten-
tial loss of the inter-modality correlation. A comparison
of early versus late fusion methods for video analysis
was reported by Snoek et al. [17].

In this work, we address the problem of multimodal
data association for human behavior recognition. First,
audio and visual data from the video sequences are
extracted and then a feature pruning technique is ap-
plied to remove redundant features according to the
spatiotemporal neighborhood of the features in the video
frames. Then, CCA [13] is employed to find the synchro-
nization offset between the audio and video features,
such that the correlation between sound emissions and
human movements is maximized. Finally, the projected
data are concatenated into a new feature vector and are
used as input to a chain hidden conditional random
field (HCRF) [18] model to capture the interaction across
modalities and compute the underlying hidden dynam-
ics between the labels and the features. Our method
is also able to cope with videos with varying human
poses as feature pruning may reduce the background
and discard irrelevant frames. In contrast to most of
the multimodal human behavior analysis methods, the
combination of feature pruning and early fusion keeps
the complexity of our method relatively low, as only one
step of classification for estimating human behaviors is
required.

The contributions of this paper can be summarized as
follows:

• We developed a supervised multimodal learning
framework, for human behavior recognition based
on the canonical correlation of audio and visual
features.

• We proposed a feature selection technique for
pruning redundant features, based on the spatio-
temporal neighborhood of the visual features that
reduced the complexity of the classification algo-
rithm.

• We employed an audio-visual synchronization
method to temporally align the audio and video
features, to better exploit the correlation of the
audio-visual features and improve the recognition

accuracy.
• We introduced a novel behavior dataset, called the

Parliament dataset [19] and conducted comprehen-
sive experiments to assess the effect of the audio
information on the behavioral recognition task.

Although the Parliament dataset was first introduced
by Vrigkas et al. [19], it is in this paper that audio infor-
mation is employed to enhance the recognition accuracy
for this dataset. The main difference with respect to [19],
is that in [19] a fully connected conditional random field
(CRF) [20] model is employed, where different labels for
each video frame were considered. This makes the model
more suitable to handle video sequences with more than
one label per video, but it significantly increases the
complexity of the model.

To evaluate our method, we used two publicly avail-
able datasets, the Parliament dataset [19] with three be-
havioral labels: friendly, aggressive, and neutral and the TV
human interaction (TVHI) dataset [21], which contains
four different interaction activities: hand shakes, high fives,
hugs and kisses.

The remainder of the paper is organized as follows:
in Section 2, a brief review of the related work is
presented. Section 3 presents the proposed approach
including the feature selection method and the audio-
visual synchronization technique. In Section 4, the novel
Parliament dataset is presented and experimental results
are reported. Finally, conclusions are drawn in Section 5.

2 RELATED WORK

In this paper, the term “behavior” is used to describe
both activities and events, which are captured in a video
sequence. We categorize the human behavior recogni-
tion methods into two main categories: unimodal and
multimodal. The latter is of great interest, as several
multimodal fusion techniques have been widely studied
in the literature.

2.1 Unimodal Behavior Recognition Methods

Much research has focused on unimodal behavior recog-
nition methods. Social interactions are an important part
of human daily life. Fathi et al. [22] modeled social
interactions by estimating the location and orientation
of the faces of the persons taking part in a social event,
computing a line of sight for each face. This informa-
tion is used to infer the location an individual person
attended. The type of interaction is recognized by as-
signing social roles to each person. The authors were able
to recognize three types of social interactions: dialogue,
discussion and monologue. Ramanathan et al. [23] aimed
at assigning social roles to people associated with an
event. They formulated the problem by using a CRF [20]
model to describe the interactions between people. Tran
et al. [24] presented a graph-based clustering algorithm
to discover interactions between groups of people in
a crowd scene. A bag-of-words approach was used to
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describe the group activity, while an SVM classifier was
used to recognize the human activity. An advantage of
CRF-based methods is that they can model arbitrary
features of observation sequences.

The problem of multi-person interactions is presented
by Burgos et al. [25], where the social behavior of mice is
discussed. Each video sequence is segmented into peri-
ods of activities by constructing a temporal context that
combines spatio-temporal features. Morency et al. [26]
first introduced the latent-dynamic conditional random
field (LDCRF) for gesture recognition. They used hidden
states to model the sub-structure of each class and
learn the dynamics between the class labels. The main
difference between the LDCRF model and the HCRF [18]
is that the former contains a class label per observation,
which makes it suitable for recognizing unsegmented
sequences.

Patron-Perez et al. [21] introduced a method for rec-
ognizing dyadic human interactions in TV shows by
tracking a person through time and using head pose
orientations for extracting useful information about the
interactions. Gaidon et al. [27] addressed the problem of
human action recognition by introducing a supervised
method for clustering motion trajectories and repre-
senting a hierarchical scheme for long human actions.
Li et al. [28] have also used trajectories to tackle the
problem of human action recognition using canonical
correlation to better exploit the intra-class variations of
data. In general, although these methods may perform
well under some circumstances, they suffer from the
problem of data association. That is, these methods are
based on the collection of time series of spatio-temporal
features at single pixel locations. However, the same
pixel location does not represent the same information
over time as acting humans are considered as highly
deformable objects. Thus, collecting time series may
require tracking of visual features in time.

2.2 Multimodal Behavior Recognition Methods

Recently, much attention has been focused on multi-
modal behavior recognition methods. An event can be
described by different types of features that provide
more and useful information. In this context, several
multimodal methods are based on feature fusion, which
can be expressed by two different strategies: early fusion
and late fusion. The easiest way of gaining the benefits
of multiple features is to directly concatenate features
in a larger feature vector and then learn the underlying
action [29]. This feature fusion technique may improve
recognition performance, but the new feature vector is
of much larger dimension.

Audio-visual representation of human actions has
gained an important role in human behavior recognition
methods. Marı́n-Jiménez et al. [30] used a bag of visual-
audio words scheme along with late fusion technique
for recognizing human interactions in TV shows. Even
though their method performs well in recognizing hu-
man interaction, the lack of an intrinsic audio-visual

relationship estimation limits the recognition problem.
Bousmalis et al. [5] considered a system based on HCRFs
[18] for spontaneous agreement and disagreement recog-
nition using audio and visual features. Wang et al. [31]
proposed a semi-supervised framework for recognizing
human actions combining different visual features. Al-
though both methods yielded promising results, they
did not consider any kind of explicit correlation and/or
association between the different modalities.

Sargin et al. [32] suggested a method for speaker
identification integrating a hybrid scheme of early and
late fusion of audio-visual features and used CCA [13]
to synchronize the multimodal features. However, their
method can cope with video sequences of frontal view
only. Wu et al. [33] proposed a human activity recog-
nition system by taking advantage of the auditory in-
formation of the video sequences of the HOHA dataset
[34] and used late fusion techniques for combining audio
and visual cues. The main disadvantage of this method
is that it used different classifiers to separately learn the
audio and visual context. Also, the audio information
of the HOHA dataset contains dynamic backgrounds
and the audio signal is highly diverse (i.e., audio shifts
roughly from one event to another), which creates the
need for developing audio features selection techniques.
Similar in spirit is the work of Wu et al. [35], who used
the generalized multiple kernel learning algorithm for
estimating the most informative audio features, while
they applied fuzzy integral techniques to combine the
outputs of two different SVM classifiers increasing the
computational burden of the method.

Song et al. [4] proposed a novel method for human
behavior recognition based on multi-view hidden condi-
tional random fields (MV-HCRF) [36] and estimated the
interaction of the different modalities by using kernel
canonical correlation analysis (KCCA) [13]. However,
their method cannot address the challenge of data that
contain complex backgrounds, and due to the down-
sampling of the original data the audio-visual synchro-
nization may be lost. Also, their method used different
sets of hidden states for audio and visual information.
This property considers that the audio and visual fea-
tures were a priori synchronized, while it increases the
complexity of the model. Siddique et al. [37] analyzed
four different affective dimensions such as activation, ex-
pectancy, power and valence [38]. To this end, they pro-
posed joint hidden conditional random Fields (JHCRF)
as a new classification scheme to take advantage of the
multimodal data. Furthermore, their method uses late
fusion to combine audio and visual information together.
This may lead to significant loss of the inter-modality de-
pendence, while it suffers from carrying the classification
error across different levels of classifiers. Although their
method could efficiently recognize the affective state of
a person, the computational burden was high because
JHCRFs require twice as many hidden variables as the
traditional HCRFs when features represent two different
modalities.
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An audio-visual analysis for recognizing dyadic inter-
actions was presented by Yang et al. [39]. The author
combined a Gaussian Mixture Model (GMM) [40] with
a Fisher kernel to model multimodal dyadic interac-
tions and predict the body language of each subject
according to the behavioral state of his/her interlocutor.
Castellano et al. [41] explored the dynamics of body
movements to identify affective behaviors using time
series of multimodal data. Martinez et al. [42] presented
a detailed review of learning methods for classifica-
tion of affective and cognitive states of computer game
players. They analyzed the properties of directly using
affect annotations in classification models, and proposed
a method for transforming such annotations to build
more accurate models. Nicolaou et al. [43] proposed
a regression model based on support vector machines
for regression (SVR) for continuous prediction of multi-
modal emotional states, using facial expression, shoulder
gesture, and audio cues in terms of arousal and valence.

Multimodal affect recognition methods in the context
of neural networks and deep learning have generated
considerable recent research interest [44]. Metallinou et
al. [45] employed several hierarchical classification mod-
els from neural networks to hidden Markov models and
their combinations to recognize audio-visual emotional
levels of valence and arousal rather than emotional labels
such as anger or kindness. Kim et al. [46] used deep
belief networks (DBN) [47] in both supervised and un-
supervised manner to learn the most informative audio-
visual features and classify human emotions in dyadic
interactions. Their system was able to preserve non-
linear relationships between multimodal features and
shown that unsupervised learning can be used efficiently
for feature selection. In a more recent study Martinez
et al. [48] could efficiently extract and select the most
informative multimodal features using deep learning, to
model emotional expressions and recognize the affec-
tive states of a person. They incorporated psychological
signals into emotional states such as relaxation, anxiety,
excitement and fun, and demonstrated that deep learn-
ing was able to extract more informative features than
feature extraction on psychological signals.

3 THE PROPOSED APPROACH

We assume that a set of training labels is provided
and each video sequence is pre-processed to obtain
a bounding box of the human in every frame and
each person is associated with a behavioral label. The
model is general and can be applied to several behavior
recognition datasets. Our method uses HCRFs, which
are defined as a chained structured undirected graph
G = (V , E) (Fig. 1), as the probabilistic framework for
modeling the behavior of a subject in a video. First, audio
and visual features are computed in each video frame
capturing the roles associated with the bounding boxes.
Next, irrelevant visual features are eliminated accord-
ing to their spatio-temporal relationship of neighboring

x1 x2 x3 · · · xT

h1 h2 h3 · · · hT

y

Fig. 1: Graphical representation of the chain structure
model. The grey nodes are the observed features and
the unknown labels represented by x and y, respectively.
The white nodes are the unobserved hidden variables h.

features. Then, the synchronization offset between the
different modalities is estimated by using CCA. Finally,
belief propagation (BP) [49] is applied to estimate the
labels.

3.1 Multimodal HCRF

We consider a labeled dataset with N video sequences
D = {xi,j , yi}

N
i=1, where xi,j = (ai,j ,vi,j) is a mul-

timodal observation sequence, which contains audio
(ai,j ∈ R

na×T ) and visual data (vi,j ∈ R
nv×T ) of length T

with j = 1 . . . T . For example, xi,j corresponds to the jth

frame of the ith video sequence. Finally, yi corresponds
to a class label defined in a finite label set Y . Our model
is applied to all video sequences in the training set. In
what follows, we omit indices i and j for simplicity.

It is useful to note that our HCRF model is a member
of the exponential family and the probability of the class
label given an observation sequence is given by:

p(y|x;w) =
∑

h

p(y,h|x;w)

=
∑

h

exp (E(y,h|x;w)−A(w)) ,
(1)

where w = [θ,ω] is a vector of model parameters,
h = {h1, h2, . . . , hT }, with hi ∈ H is a set of latent
variables. In particular, the number of latent variables
may be different from the number of samples, as hj may
correspond to a substructure in a sample. However, for
simplicity we use the same notation. Finally, E(y,h|x;w)
is a vector of sufficient statistics and A(w) is the log-
partition function ensuring normalization:

A(w) = log
∑

y′

∑

h

exp (E(y′,h|x;w)) . (2)

Different sufficient statistics E(y,h|x;w) in (1) define
different distributions. In the general case, sufficient
statistics consist of indicator functions for each possible
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configuration of unary and pairwise terms:

E(y,h|x;w) =
∑

j∈V

∑

ℓ

Φℓ(y, hj,x; θℓ)

+
∑

j,k∈E

∑

ℓ

Ψℓ(y, hj , hk;ωℓ) ,
(3)

where the parameters θ and ω are the unary and the
pairwise weights, respectively, that need to be learned
and Φℓ(y, hj ,x; θℓ), Ψℓ(y, hj , hk;ωℓ) are the unary and
pairwise potentials, respectively.

The unary potential is expressed by:

Φℓ(y, hj ,x; θℓ) =
∑

j

φ1,ℓ(y, hj ; θ1,ℓ)+
∑

j

φ2,ℓ(hj ,x; θ2,ℓ) ,

(4)
and it can be considered as a state function, which
consists of two different feature functions. The label
feature function, which models the relationship between
the label y and the hidden variables hj , is expressed by:

φ1,ℓ(y, hj; θ1,ℓ) =
∑

λ∈Y

∑

a∈H

θ1,ℓ1(y = λ)1(hj = a) , (5)

where 1(·) is the indicator function, which is equal to 1,
if its argument is true and 0 otherwise. The observation
feature function, which models the relationship between
the hidden variables hj and the observations x, defined
by:

φ2,ℓ(hj ,x; θ2,ℓ) =
∑

a∈H

θ2,ℓ1(hj = a)x . (6)

The pairwise potential is a transition function and
represents the association between a pair of connected
hidden states hj and hk and the label y. It is expressed
by:

Ψℓ(y, hj , hk;ωℓ) =
∑

λ∈Y
a,b∈H

ωℓ1(y = λ)1(hj = a)1(hk = b) .

(7)

3.2 Parameter Learning and Inference

Our goal is to assign a test video sequence with a
behavioral role by maximizing the posterior probability:

y = argmax
y∈Y

p(y|x;w) . (8)

In the training step the optimal parameters w
∗ are

estimated by maximizing the following loss function:

L(w) =

N
∑

i=1

log p(yi|xi;w)−
1

2σ2
‖w‖2 . (9)

The first term is the log-likelihood of the posterior
probability p(y|x;w) and quantifies how well the distri-
bution in (1) defined by the parameter vector w matches
the labels y. It can be rewritten as:

log p(yi|xi;w) = log
∑

h

exp(E(y,h|x;w))

− log
∑

y′,h

exp(E(y′,h|x;w)) .
(10)

The second term is a Gaussian prior with variance σ2

and works as a regularizer. The loss function is min-
imized using a gradient-descent optimization method.
More specifically, in our experiments we used the
limited-memory BFGS (LBFGS) method to maximize the
negative log-likelihood of the data.

Having set the parameters w, the marginal probability
is obtained by applying the BP algorithm [40] using the
graphical model as depicted in Fig. 1.

3.3 Multimodal Feature Extraction

In this work, we used three different sets of visual
features (i.e., STIPs, head orientations, and proxemic fea-
tures). First, we extract local space-time features at frame
rate of 25 fps using a 72-dimensional vector of HoG and
90-dimensional vector of HoF feature descriptors [50]
for each STIP [51], which captures the human motion
between frames. These features were selected because
they can capture salient visual motion patterns in an
efficient and compact way.

Feature extraction may be erroneous due to cluttered
backgrounds caused by camera motion or changes in
illumination and appearance. Reducing the number of
irrelevant/redundant features drastically reduces the
running time of a learning algorithm and yields a more
general concept. For this reason, we adopt a similar
technique with Liu et al. [52] and we perform feature
pruning based on spatial and temporal neighborhood
of motion features. The proposed algorithm depends on
two factors: (i) the distance between the centers of the
feature locations and (ii) the scatter of each feature group
in consecutive frames.

Let Nt be the number of features in frame t and N

be the total number of features in the video sequence.
Let also, µt and σ2

t be the center and the variance of
the feature locations in frame t, respectively. First, we
discard those frames where Nt is much larger than
the mean number of features in the video sequence.
Next, if the ratio of the difference of the means to the
standard deviation of feature locations and the number
of features between frame t and its neighboring frames
t − 1 and t + 1 are over a predefined threshold, we
select Mt ≤ Nt features that lie close to the centers of
the feature locations in neighboring frames. A detailed
description of the proposed feature pruning algorithm
is presented in Algorithm 1. Figure 2 depicts some rep-
resentative examples of the feature pruning technique.
Feature pruning may significantly reduce the number of
features (Fig. 6).

In cases where the video sequences are not person-
centric, but may contain human interactions (e.g., hug-
ging), STIP features are not adequate. For this reason,
we have used head orientation as additional feature.
This choice is motivated by the fact that a person who
interacts with another is more likely to look at that
person than looking at somewhere else. Furthermore,
we have also used proxemic features, which capture
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Algorithm 1 Feature pruning

Input: Original features vt for frame t.
Output: Pruned features zt for frame t.

1: if Nt >> mean(N) then
2: Discard frame t;
3: end if

4: if

(

‖µt−1 − µt‖
2

σ2
t−1

+ σ2
t

> ε &
‖µt − µt+1‖

2

σ2
t + σ2

t+1

> ε

)

&

(|Nt−1 −Nt| > ζ & |Nt −Nt+1| > ζ) then
5: j ← 1;
6: for i← 1 to Nt do

7: if
‖µt−1 − µt‖

2

‖vi,t − µt‖2
< T &

‖µt − µt+1‖
2

‖vi,t − µt‖2
< T

then
8: zj,t ← vi,t;
9: j ← j + 1;

10: end if
11: end for
12: end if

(a) Original features (b) Pruned features

Fig. 2: Representative examples of feature pruning. (a)
The original features and (b) the pruned features for
the Parliament dataset [19] (top row) and the TV human
interaction dataset [21] (bottom row). Feature pruning
may reduce the number of features by 29% on average.

the spatial and temporal relations between interacting
persons detected in the video sequences. This means that
interacting persons are in general more probable to lie
close to each other (spatially and temporally).

Moreover, many audio features have been studied
for speaker detection and voice recognition [53]. Mel-
frequency cepstral coefficients (MFCCs) [54] are the most
popular and common audio features. We employ the
MFCCs features and their first and second order deriva-
tives (delta and delta-delta MFCCs) to form an audio
feature vector of dimension 39. Table 1 summarizes all
audio and visual feature types used in our algorithm.

3.4 Audio-Visual Synchronization and Fusion

The purpose of the proposed method is to perform
multimodal human behavior recognition by taking into

TABLE 1: Types of audio and visual features used for hu-
man behavior recognition. The numbers in parentheses
indicate the dimension of the features.

Audio features (39) Visual features (166)

MFCCs (13) STIP (162)

Delta-MFCCs (13) Head orientations (2)

Delta-delta-MFCCs (13) Proxemic (2)

account both visual and audio information. One draw-
back of combining features of different modalities is the
different frame rate that each modality may have. Thus,
prior to the fusion step, visual features are interpolated
to match the audio frame rate. However, interpolation
may harm the synchronization between the audio and
visual features, which is necessary to better exploit the
correlation between the different modalities. To this end,
we propose using CCA to estimate audio-visual synchro-
nization offset and perform the data fusion.

Given a set of zero-mean paired observations
{(ai,vi)}

M
i=1, with A = [a1, . . . , aM ] and

V = [v1, . . . ,vM ], CCA seeks to find two linear
transformation vectors γa and γv , such that the
correlation ρ(γT

aA,γT
v V) between the projections onto

these vectors, a = γT
aA and v = γT

v V (also known as
canonical variates) is maximized:

ρ(a,v) = max
γ

a
,γ

v

E[av]
√

E[a]2E[v]2

= max
γ

a
,γ

v

E[γT
aAV

T γv]
√

E[γT
aAATγa]E[γ

T
v VVTγv]

= max
γ

a
,γ

v

γT
aΣavγv

√

γT
aΣaaγaw

T
v Σvvγv

,

(11)

where E[·] is the expected value, Σaa ∈ R
na×na and

Σvv ∈ R
nv×nv are the covariance matrices, respectively,

and Σav ∈ R
na×nv is the cross-covariance matrix of A

and V.
The solutions for γa and γv are the eigenvectors cor-

responding to the largest eigenvalues of Σ−1
aaΣavΣ

−1
vv Σva

and Σ−1
vv ΣvaΣ

−1
aaΣav, respectively.

The greatest challenge when dealing with audio-visual
features is to correctly identify the auditory information
that corresponds to the motion of the underlying event.
This means, that audio and visual features need to be
precisely correlated before data fusion is applied [11],
[32]. To this end, we assume that there is a time gap τ ,
which can be seen as an integer offset of frames between
audio and visual streams such that the visual feature
vector vt in frame t corresponds to the (t + τ)th audio
feature vector at+τ . We assume that the synchronization
offset τ may lie in an interval [−s, s]. First, we remove the
first and last s frames from the audio signal and compute
the audio features in the remaining cropped sequence of
length T − 2s. Then, we compute the visual features vt,
t ∈ [1, 2s+ 1] in all groups of T − 2s consecutive frames.
Finally, CCA is applied between the set of cropped audio
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Algorithm 2 Audio-visual synchronization

Input: Audio and video streams, time interval [−s, s].
Output: Synchronization offset τ .

1: Delete the first and last s frames from the auditory
signal.

2: Compute the audio features in the remaining T − 2s
instances of the audio stream.

3: for all groups of T − 2s consecutive frames do
4: Compute the visual features vt, t ∈ [1, 2s+ 1].
5: Estimate the CCA between the cropped audio

and the visual features vt

6: end for
7: Estimate the temporal offset τ according to Eq. (12).

(a) (b) (c)

Fig. 3: Sample frames from the proposed Parliament
dataset. (a) Friendly, (b) Aggressive, and (c) Neutral.

features a and each visual feature group vt. We select the
optimal temporal gap such that the correlation between
audio and visual features is maximized according to:

τ = argmax
t

λt − (s+ 1), (12)

where λ corresponds to the largest eigenvalue, which is
associated with the maximization of the canonical corre-
lation between the audio feature vector and each group
of visual features, as the audio feature vector is slid
over the visual features. The steps of the audio-visual
synchronization algorithm are summarized in Algorithm
2.

We now consider the fusion of the audio and visual
features a and v respectively by projecting these features
onto the canonical basis vectors [γT

a ,γ
T
v ]

T and use this
projection for recognition.

4 EXPERIMENTAL RESULTS

In what follows, we refer to our synchronized audio-
visual cues for activity recognition method by the acronym
SAVAR. The experiments are applied to the novel Parlia-
ment dataset [19] and the TV human interaction (TVHI)
dataset [21]. The number of features is kept relatively
small in order not to increase the model’s complexity.

4.1 Datasets

Parliament [19]: This dataset is a collection of 228 video
sequences, depicting political speeches in the Greek
parliament, at a resolution of 320 × 240 pixels at 25
fps. All behaviors were recorded for 20 different sub-
jects. The videos were acquired with a static camera
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Fig. 4: Distribution of classes (a) friendly, (b) aggressive,
and (c) neutral.

(a) (b)

(c) (d)

Fig. 5: Sample frames from the TVHI dataset. (a) Hand
shake, (b) High five, (c) Hug, and (d) Kiss.

and contain uncluttered backgrounds. The length of the
video sequences is 250 frames. The video sequences were
manually labeled with one of three behavioral labels:
friendly (90 videos), aggressive (73 videos), or neutral (65
videos). Figure 3 depicts some representative frames of
the Parliament dataset. The subjects express their opin-
ion on a specific law proposal and they adjust their
body movements and voice intensity level according to
whether they agree with that or not.

Each video sequence was manually labeled with one
of three behavioral labels according to human perception
on kindness and aggressiveness. The distribution of the
three classes friendly, aggressive, and neutral is depicted in
Figure 4. Each plot depicts the univariate histogram for
each class. Note that all classes are not linearly separable.

TV human interaction [21]: This dataset consists of
300 video sequences collected from over 20 different TV
shows. The video clips contain four kinds of interactions:
hand shakes, high fives, hugs and kisses, which are equally
distributed to the four classes (50 video sequences for
each class). Negative examples (e.g., clips that do not
contain any of the aforementioned interactions) consist
the remaining 100 videos. The length of the video se-
quences ranges from 30 to 600 frames. The great degree
of intra and inter-class diversity between the clips, such
as different number of actors in each scene, variations
in scale, and changes in camera angle, is an important
factor that popularized this dataset for real world eval-
uation. Some representative frames of the TVHI dataset
are illustrated in Fig. 5.

In particular, the Parliament and the TVHI datasets
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are representative examples of individual and social
behaviors, respectively. The Parliament contains exam-
ples of behavioral attributes, which may correspond to
positive (e.g., friendliness) or negative (e.g., aggressive-
ness) behaviors. Passive is also a possible behavioral
state for this dataset. The TVHI dataset on the other
hand, models the social behaviors of people in terms of
communication/interation with other people. Both kinds
of behaviors entail much effort in order to analyze the
given information.

4.2 Implementation details

We used 5-fold cross validation to split the Parliament
dataset into training and test sets, and we report the
average results over all the examined configurations.
Moreover, for the same dataset, we also used the leave-
one-speaker-out (LOSO) cross validation, to split train-
ing and testing data into two independent sets so that
training and testing data may not have utterances from
the same speaker. For the evaluation of our method to
the TVHI dataset, we used the provided annotations,
which are related to the locations of the persons in each
video clip including the bounding boxes that contain
them, the head orientations of each subject in the clips,
the pair of the subjects who interact to each other and
the corresponding labels. For comparison purposes, we
used the same data split described in [21], which is a 10-
fold cross validation. To obtain a bounding box of the
human in every frame we used the method described
by Dalal and Triggs [55]. Each frame is considered as a
grid of overlapping blocks, where HOG features [50] are
computed for each block. Finally, a binary SVM classifier
is used to identify wether there exists an object or not.
The detection window is extracted in all positions and
scales and non-maximum suppression is used to detect
each object. This method is able to cope with variations
in appearance, pose, lighting and complex backgrounds.

The audio signal was sampled at 16 KHz and pro-
cessed over 10 ms using a Hamming window with
25% overlap. The audio feature vector consisted of a
collection of 13 MFCC coefficients along with the first
and second derivatives forming a 39 dimensional audio
feature vector.

4.3 Model Selection

As shown in Fig. 2, there are many features that are
non-informative due to pose variations or complex back-
grounds. A comparison of the per class number of visual
features before and after pruning using Algorithm 1
for both Parliament and TVHI datasets is illustrated in
Fig. 6. It can be observed that the number of visual
features before pruning is much higher than the number
of visual features after pruning, which indicates that our
pruning algorithm may significantly reduce the number
of features by 29% for the Parliament dataset and by 27%
for the TVHI dataset on average.
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Fig. 6: Comparison of the per class number of visual
features before and after pruning for (a) the Parliament
and (b) the TVHI datasets.
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Fig. 7: Synchronization offsets between audio and video
features for some sample video sequences of the Parlia-
ment (left) and TVHI (right) datasets. The circle indicates
a delay of (a) -44 frames, (b) +37 frames.

To automatically estimate the synchronization offset,
such that the correlation between audio and video fea-
tures is maximized, we used Algorithm 2. Figure 7
illustrates the synchronization offset for some randomly
selected video sequences by plotting the most significant
canonical basis as the visual features slide over the audio
features. It is worth noting that, for the synchroniza-
tion offset, we selected the frame with the maximum
correlation. The corresponding canonical bases for the
synchronized audio and visual features are depicted
in Fig. 8. The similarity between the audio and visual
canonical variates indicates high correlation.

The optimal number of hidden states was automati-
cally estimated based on validation, varying the number
of hidden states from three to ten. The L2 regularization
scale term σ was set to 10k, k ∈ {−3, . . . , 3}. Finally, our
model was trained with a maximum of 400 iterations for
the termination of the LBFGS minimization method.

4.4 Results and Discussion

We compared the SAVAR approach, which uses audio-
visual feature synchronization with an HCRF model,
SAVAR(A/V sync), with previously reported methods in
the literature and seven baseline approaches (variants of
the proposed method). First, we compared the proposed
SAVAR method with an HCRF variant, which does not
employ audio-visual feature synchronization prior to
the fusion process, SAVAR(A/V no-sync). To show the
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Fig. 8: Canonical variates of audio and visual features
for two sample videos of the Parliament (top row) and
the TVHI (bottom row) datasets. Notice the high correla-
tion between audio and visual features obtained by the
projection.

benefit of audio-visual fusion and synchronization, we
compared our SAVAR(A/V sync) method against two
HCRF variants, which use only audio, SAVAR(audio),
and only visual, SAVAR(visual), features as input, re-
spectively. Moreover, we have compared our method
with a late fusion technique without using audio-visual
synchronization as it is not necessary in late fusion.
Each modality was learned separately and then the
classification scores were used as input to an SVM model
to fuse the results.

A conditional random field model, using four different
variants, was also used as a baseline method, to demon-
strate the effectiveness of the HCRF model to learn the
hidden dynamics between the video clips of different
classes. First, synchronized and unsynchronized audio-
visual features were used as input to two CRF models
comprising two different variants A/V sync CRF and
A/V no-sync CRF, respectively. Finally, we trained two
CRFs, one with only audio features (audio CRF) and one
with only visual (visual CRF) features.

4.4.1 Feature Pruning
The classification accuracy with respect to the number of
hidden states before and after feature pruning for both
the 5-fold and the LOSO cross validation schemes for
the Parliament dataset is shown in Table 2. It is clear
that the model obtained by the proposed algorithm,
which uses pruned features, leads to better classification

accuracy compared to the model, which uses the un-
pruned features for both cross validation schemes. This
is due to the fact that the un-pruned visual features
may contain outliers and decrease the recognition ac-
curacy, as the redundant visual features may lead to
false estimation of the synchronization offset. Although
audio features may improve the overall accuracy of the
proposed method, in the case of un-pruned features they
do not provide any significant performance as visual
features may dominate over the audio features. For
LOSO cross validation, and in contrast to the 5-fold
scheme, visual features perform better than audio as
there exist no utterances from the same speaker, and
thus model overfitting, due to existence of redundant
information, may be prevented. It is worth mentioning
that the accuracy difference between visual and audio
cues may be due to the difference in number of features
for each modality. The optimal number of hidden states
for the 5-fold and LOSO cross validation schemes, which
use only audio and only visual data, in the case where
feature pruning is used, is six. For the A/V no-sync
method the optimal number of hidden states is 10. The
number of hidden states remains the same for the LOSO
scheme. The optimal number of hidden states for the
proposed A/V sync method for the 5-fold scheme is
seven, while for the LOSO scheme increases to nine.

Also, Table 2 shows the classification results with
respect to the number of hidden states when late fusion
is applied. It can be seen that the proposed method
yields better results than late fusion for both 5-fold and
LOSO cross validation schemes. For more than seven
hidden states, the results of the proposed method are
notably higher than those obtained by late fusion.

The dependence of the classification accuracy and the
number of hidden states on the TVHI dataset for both
pruned and un-pruned features is shown in Table 3. Note
that the visual model, which uses the original un-pruned
features, performs better than the proposed A/V sync
method, which uses pruned visual features, for six and
10 hidden states. This is because the additional visual
features may act as outliers and affect the estimation of
the true synchronization offset. We can observe that in
the case of feature pruning the visual model requires
seven hidden states to achieve the best classification
accuracy. It can also be noted that the audio model
achieves the best recognition result by using four hidden
states. Although the recognition results for this model
are affected by background noise, it is obvious that
the combination with the visual information can signif-
icantly improve the recognition rate. The A/V no-sync
method requires eight hidden states, while the proposed
A/V sync method uses nine hidden states to reach the
best recognition accuracy. The number of hidden states
depends not only on the number of the classes in a
specific dataset, but also on the variety of the features
used.

Table 3 demonstrates also the classification results,
when late fusion is applied. Although in three out of



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING VOL. XXX, NO. XXX, MM YYYY 10

TABLE 2: Recognition accuracy of the proposed HCRF
model with respect to the number of hidden states
(h={3 . . . 10}) for the Parliament dataset [19] using 5-fold
and LOSO cross validation, before feature pruning and
after feature pruning.

#Hidden states: 3 4 5 6 7 8 9 10

HCRF before feature pruning using 5-fold cross validation

A/V sync 29.0 55.7 56.8 64.5 46.3 47.7 51.4 51.0

A/V no-sync 34.6 46.5 55.4 51.0 34.1 44.7 42.0 44.4

Visual 44.9 56.6 47.6 52.9 44.1 40.9 60.8 48.9

HCRF before feature pruning using LOSO cross validation

A/V sync 67.8 70.0 42.1 52.8 51.8 34.4 35.5 66.5

A/V no-sync 37.1 43.7 47.1 33.4 50.1 44.7 40.9 53.9

Visual 48.4 31.4 47.6 36.4 43.0 43.2 42.6 43.6

HCRF after feature pruning using 5-fold cross validation

A/V sync 88.1 95.2 85.7 80.2 97.6 95.2 90.5 92.9

A/V no-sync 63.9 66.9 64.4 71.0 69.8 73.8 72.3 78.9

Audio 58.2 71.0 72.7 72.7 54.7 67.1 69.6 67.3

Visual 67.1 57.2 48.2 67.1 15.1 44.9 44.0 59.9

HCRF after feature pruning using LOSO cross validation

A/V sync 91.0 89.7 94.9 77.1 93.6 94.9 97.4 97.4

A/V no-sync 63.0 59.3 74.9 80.4 76.9 79.2 75.1 89.7

Audio 59.3 63.0 50.0 63.0 51.9 53.7 62.7 50.0

Visual 42.7 63.7 58.2 65.6 60.0 42.7 39.6 58.2

Classification accuracies using late fusion

Late-fusion (5-fold) 91.1 84.4 89.6 82.9 69.6 72.6 71.9 68.9

Late-fusion (LOSO) 83.3 78.7 83.9 81.5 63.2 67.1 69.3 68.9

TABLE 3: Recognition accuracy of the proposed HCRF
model with respect to the number of hidden states
(h={4 . . . 10}) the TVHI dataset [21] before feature prun-
ing and after feature pruning.

#Hidden states: 4 5 6 7 8 9 10

HCRF before feature pruning

A/V sync 40.6 60.9 46.9 43.8 53.1 54.7 54.7

A/V no-sync 39.1 42.2 40.6 32.8 46.9 51.6 35.9

Visual 35.9 37.5 48.4 42.2 29.9 35.9 60.9

HCRF after feature pruning

A/V sync 53.1 79.7 70.3 73.4 73.4 81.3 76.6

A/V no-sync 46.9 53.1 35.9 56.6 60.9 54.7 42.2

Audio 35.9 34.4 29.7 28.1 28.1 32.8 23.4

Visual 28.1 50.0 59.4 60.9 37.5 35.9 57.8

Classification accuracies using late fusion

Late-fusion 80.1 75.0 73.4 75.0 71.8 78.1 76.5

seven cases, the late fusion scheme was able to im-
prove the classification results, the proposed early fusion
method performed better for the majority of the different
number of hidden states. This is due to the heterogeneity
of the different modalities and the confidence scores
of each classifier, which may affect the discriminative
ability of the SVM classifier as it may assign larger
weights to scores that are less prominent.

Taking a closer look at the visual model, we can
see that the number of hidden states plays a crucial
role in the recognition process; when the hidden states
are increased from six to seven, recognition accuracy
falls drastically from 67.1% to 15.1% for the Parliament

TABLE 4: Classification results on the Parliament dataset
[19]. The numbers in the parentheses correspond to the
standard deviations of the classification accuracy.

Method
Accuracy (%)

Audio Visual A/V no-sync A/V sync

Vrigkas et al. [19] N/A 85.5(±0.412) N/A N/A

SVM [40] 53.2(±0.053) 65.7(±0.140) 69.8(±0.135) 72.6(±0.043)

CRF [20] 50.3(±1.416) 78.1(±1.560) 67.6(±0.491) 83.7(±0.653)

SAVAR-5-fold 72.7(±0.721) 67.1(±0.389) 78.9(±0.042) 97.6(±0.165)

SAVAR-LOSO 62.2(±0.338) 65.5(±0.347) 89.7(±1.613) 97.4(±0.079)

dataset and from 60.9% to 37.5% for the TVHI dataset.
However, a larger number of hidden states may lead to
a severe overfitting of the model. It is also worth men-
tioning that both the Parliament and the TVHI datasets
hold strong intra-class variabilities as certain classes
are often confused because the subject performs similar
body movements. This confirms that audio and visual
information combined together constitute an important
cue for action recognition.

4.4.2 Comparison of Learning Frameworks

Tables 4 and 5 report the classification accuracy on
the Parliament dataset, for both 5-fold and LOSO cross
validation schemes, and the TVHI datasets, respectively.
We compare our SAVAR(A/V sync) method with the
seven baseline methods and include previous results
for each dataset reported in the literature. The results
indicate that our approach captures the hidden dynamics
between the clips (i.e., the interaction between an arm
lift and the raise in the voice). It is clear that HCRFs
outperform CRFs when multimodal data are used for
the recognition task. Notably, our approach achieves
very high recognition accuracy for the Parliament dataset
(97.6%), when 5-fold cross validation is used. Com-
parable results are also provided by the LOSO cross
validation scheme as the recognition accuracy is only by
0.2% lower than the 5-fold cross validation counterpart
method. Note that for the SAVAR(A/V no-sync) variant,
when LOSO scheme is used, the classification accuracy
is by approximately 12% higher than the corresponding
5-fold cross validation method. Also, when the 5-fold
cross validation scheme is employed, SAVAR(audio) per-
forms better than SAVAR(visual) as training data may
have utterances from the same speaker. For the LOSO
scheme, where the same speaker is excluded from the
training data, visual features perform by approximately
3% better than the acoustic.

The method in [19] employs a fully connected CRF
model, where not only the labels but also the observation
samples are associated to each other between consecu-
tive frames. That is, the method in [19] assigns a distinct
label to each frame, which makes it more suitable to
cope with un-segmented videos (i.e., videos with more
than one class labels). On the other hand, this property
significantly increases the complexity of the method,
which makes it quite difficult to use for large video clips.

Also, Table 5 demonstrates that the SAVAR approach
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TABLE 5: Classification results on the TVHI dataset
[21]. The numbers in the parentheses correspond to the
standard deviations of the classification accuracy.

Method
Accuracy (%)

Audio Visual A/V no-sync A/V sync

Patron-Perez et al. [21] N/A 54.7 N/A N/A

Li et al. [28] N/A 68.0 N/A N/A

Yu et al. [56] N/A 66.2 N/A N/A

Gaidon et al. [27] N/A 55.6 N/A N/A

Marı́n-Jiménez et al. [30] 48.5 46.0 54.5 N/A

SVM [40] 46.3(±0.008) 56.7(±0.009) 64.6(±0.012) 75.9(±0.012)

CRF [20] 36.7(±0.354) 38.7(±0.527) 49.5(±0.544) 52.8(±0.746)

SAVAR 35.9(±0.283) 60.9(±0.028) 60.9(±0.644) 81.3(±0.191)

TABLE 6: p-values of the proposed method for the
Parliament dataset [19].

Method SAVAR-5-fold SAVAR-LOSO

Vrigkas et al. [19] 0.0200 0.0058

SVM [40] 0.0096 0.0001

CRF [20] 0.0137 0.0047

performs significantly higher than other methods pro-
posed in the literature for the TVHI dataset, by achieving
an accuracy of 81.3%, which is remarkably higher than
the best recognition accuracy (68%) for this dataset
achieved by Li et al. [28], when only visual features
are used, and the best recognition accuracy (54.5%)
achieved by Marı́n-Jiménez et al. [30], when audio and
visual features are combined together. It is also worth
noting that the SAVAR(visual) and the SAVAR(A/V no-
sync) models achieve the same recognition accuracy
for this dataset, indicating how important the audio-
visual synchronization is for the recognition task, as the
unsynchronized multimodal data may not provide any
further information to the overall process.

In order to provide a statistical evidence of the recogni-
tion accuracy, we computed the p-values of the obtained
results with respect to the compared methods. The null
hypothesis was defined as: the mean performances of the
proposed model are the same as those of the state-of-the-
art methods; and the alternative hypothesis was defined
as: the mean performances of the proposed model are
higher than those of the state-of-the-art methods. Paired
t-tests showed that the results were statistically signifi-
cant for both datasets.

For the Parliament dataset (Table 6), we may observe
that the SAVAR-5-fold and SAVAR-LOSO approaches
reject the null hypothesis as all values are greater than
the critical value (95% of significance level). For the TVHI
dataset (Table 7) the null hypothesis is rejected for the
majority of the cases. That is, for four out of seven cases
the p-values were less than the significance level of 0.05.
Therefore, we may conclude that the null hypothesis can
be rejected and the improvements obtained by our model
are statistically significant.

The resulting confusion matrices of the proposed
method for the optimal number of hidden states for the
Parliament dataset using 5-fold and LOSO cross valida-

TABLE 7: p-values of the proposed method for the TVHI
dataset [21].

Method SAVAR

Patron-Perez et al. [21] 0.0012

Li et al. [28] 0.1239

Yu et al. [56] 0.0620

Gaidon et al. [27] 0.0015

Marı́n-Jiménez et al. [30] 0.0002

SVM [40] 0.0401

CRF [20] 0.0007

tion, are depicted in Fig. 9. The proposed SAVAR(A/V
sync) method has significantly small classification errors
between different classes, when is compared to the other
variants, for both 5-fold and LOSO cross validation
schemes. The SAVAR(A/V no-sync) variant has also
good classification results and particularly, for the LOSO
cross validation scheme, it can perfectly recognize the
classes friendly and neutral. It is also interesting to ob-
serve that the different classes for the SAVAR(visual) and
the SAVAR(audio) variants may be strongly confused,
which emphasizes the fact that when combining audio
and visual information together we are able to better
separate the emotional states of a person.

Finally, the confusion matrices for the TVHI dataset
are shown in Figure 10. The smallest classification error
between classes belongs to the proposed SAVAR(A/V
sync) method. Note that the different classes may be
strongly confused as the TVHI dataset has large intra-
class variability. Especially, the SAVAR(audio) variant
has the largest classification error among all other vari-
ants as all classes are confused with the class kiss. This
is due to the fact that in class kiss the audio informa-
tion may serve as outlier since it contains background
sounds.

The main strength of the proposed method is that
it achieves remarkably good classification results when
synchronized multimodal features are used compared
with the results reported in the literature for the same
datasets. Additionally, it keeps the number of visual
features relatively small by pruning irrelevant features,
thus reducing the computational burden of the method.

5 CONCLUSION

In this paper, we considered the problem of human
behavior recognition in a supervised framework using
a HCRF model with multimodal data. Specifically, we
used audio features jointly with the visual information
to take into account natural human actions. We proposed
a feature selection technique for pruning redundant
features, based on the spatio-temporal neighborhood of
each feature in a video clip. This has helped reduce the
number of features and sped up the learning process.

We also proposed a method for multimodal feature
synchronization and fusion using CCA. We found that
a moving subject is highly correlated with the auditory
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Fig. 9: Confusion matrices for the classification results of the proposed SAVAR approach for the Parliament dataset
[19], after feature pruning, using 5-fold cross validation (top row) and LOSO cross validation (bottom row).
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Fig. 10: Confusion matrices for the classification results
of the proposed SAVAR approach for the TVHI dataset
[21], after feature pruning.

information, as human behaviors are characterized by
complex actions of movements and sound emissions.
The experimental results indicated that the exact syn-
chronization of multimodal data before feature fusion
ameliorates the recognition performance. In addition, the
combination of audio and visual cues may lead to better
understanding of human behaviors. The main strength
of this method is that our multimodal fusion approach is
general and it can be applied to several types of features
for recognizing realistic human actions.

According to our results, the proposed SAVAR
method, when it is used with synchronized audio-visual
cues, achieves notably higher performance than all the
compared classification schemes. This could be seen as

an additional characteristic of our model to discriminate
between similar classes, when multimodal data is used.
Nonetheless, when only one modality was used, the
method seemed to have difficulties in efficiently recog-
nizing human behaviors, but it could yield comparable
results to the multimodal SAVAR method. That is, al-
though the combination of audio and visual cues could
constitute a strong attribute for discriminating between
different classes, each modality separately was unable
to capture the variation in temporal patterns of the
input data. The proposed method was also able to deal
with natural video sequences. The visual feature pruning
process could significantly reduce the amount of irrele-
vant features extracted in each frame, and considerably
increased the classification performance with respect to
all methods that do not incorporate feature pruning.

In the future, we plan to extend our model to cope
with multimodal data, which can be considered mutu-
ally uncorrelated. Also, in the present work the number
of hidden states is determined a priori. An automatic
method necessitating more complex models is an issue
of ongoing research.
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