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ABSTRACT
The diaphragm is a thin double-domed muscle that separates
the thoracic and abdominal cavities. An accurate delineation
of the diaphragm surface will be useful in providing a good
region of interest for segmentation problems pertaining to the
thoracic and abdominal cavities. In this paper, we present a
fully automatic 3D graph-based method for the segmentation
of the diaphragm in non-contrast CT data. In particular, we re-
formulate the diaphragm segmentation problem as an optimal
surface segmentation problem in a volumetric graph. Com-
parison of the results obtained using our method with manual
segmentations performed by an expert on non-contrast car-
diac CT scans of 7 randomly selected patients indicated an
overlap of 94.20± 0.01%.

Index Terms— Diaphragm segmentation, non-contrast CT,
max closure

1. INTRODUCTION

The diaphragm is a thin double-domed muscle that separates
the thoracic and abdominal cavities. It is located below the
lungs and forms the floor of the thoracic cavity on which the
heart and lungs rest. An algorithm that is capable of accu-
rately delineating the diaphragm surface can be used to ob-
tain a good region of interest for the segmentation problems
pertaining to the thoracic and abdominal cavities. However,
automatic segmentation of the diaphragm in non-contrast CT
data is challenging due to the similar appearance of organs
surrounding the diaphragm and poor resolution of routinely
acquired non-contrast CT scans.

Previous attempts to detect the diaphragm include semi-
automatic [1] and automatic approaches [2] [3]. In the auto-
mated approach proposed by Zhou et al. [2], the diaphragm
surface is estimated by deforming a thin-plane spline model
to fit the bottom surfaces of the left and right lungs. One of the
drawbacks of this approach is that it does not take advantage
of any available edge information near the heart-diaphragm
interface and the segmentation result obtained in these areas
is purely driven by the smoothing constraints of the thin-
plate spline. Rangayyan et al. [3] used a similar approach
to obtain an initial estimation of the diaphragm surface and
then followed it with a refinement step. Specifically, they

used a quadratic surface to interpolate through the bottom
surfaces of the left and right lungs and then used an active
contour model to refine the diaphragm segmentation in each
slice. The drawback of this approach is that the refinement
step is purely done in 2D and does not use any inter-slice
information.

In this paper, we present a fully automatic 3D graph-based
method for the segmentation of the diaphragm in non-contrast
CT data that utilizes both prior information about the anatom-
ical location of the diaphragm and any available image in-
formation. In particular, we reformulate the problem as an
optimal surface segmentation problem in a volumetric graph.
Recently, Li et al. [4] proposed an efficient polynomial-time
method for globally optimal surface segmentation in volumet-
ric images. We adapt this method to solve our surface seg-
mentation problem.

The rest of the paper is organized as follows: in Section 2, we
present background material related to our work. In Section 3,
we provide a detailed description of the proposed method
for automatic segmentation of diaphragm. In Section 4, we
present the results obtained using the proposed method and
compare them with manual segmentations performed by an
expert. Finally, in Section 5, we present our conclusions.

2. BACKGROUND

2.1. Minimum-cost closed set problem

Consider a directed graph G = 〈V,E〉, where E is the set of
directed edges and V = {v1, v2, ..., vn} is the set of vertices
or nodes. A closed set of the digraph G is defined as a set
of n vertices A ⊂ V such that if vi ∈ A and (vi, vj) ∈ E
then vj ∈ A (i.e., if a vertex vi is in the closed set then all
its successors are also in the closed set) which we refer to
as the closure set constraint. Without loss of generality, let
C be the cost function that associates each vertex vi ∈ V
with a real numbered cost C(vi), which we abbreviate as Ci.
Also, let A be the set of all possible non-empty closed sets
of the digraph G. The cost of a closed set A ∈ A is de-
fined as the sum of costs of all the nodes belonging to the
closed set A. The minimum-cost closed set problem is then
to search for a closed set A∗ ∈ A with minimum cost. For-
mally, the minimum-cost closed set problem can be stated as:



A∗ = arg min
A∈A

∑
vi∈A

Ci.

The minimum-cost closed set problem can be re-formulated
as an integer programming problem [5]. Let x = {x1, ..., xn}
be the set of membership variables where xi ∈ {0, 1} is the
membership variable corresponding to the vertex vi such that
xi is equal to 1 if vi ∈ A∗ and 0 otherwise. Also, let eij be
an indicator variable that is equal to 1 if (vi, vj) ∈ E and 0
otherwise. According to the definition of a closed set, if xi =
1 (i.e., vi ∈ A) and (vi, vj) ∈ E then xj = 1 (i.e., vj ∈ A),
which is essentially the closure set constraint. It can be easily
seen that this constraint is satisfied if eijxi(1− xj) = 0. The
minimum-cost closed problem is essentially equivalent to the
following 0-1 integer programming problem:

min
x

{
n∑

i=1

Cixi+λ ·
n∑

i=1

n∑
j=1

eijxi(1− xj)

}

xi ∈ {0, 1}, i = 1, 2, ..., n

(1)

where λ is set to a very high value (infinity) to ensure that
the optimal solution satisfies the closure set constraint. The
formulation expressed in equation 1 has the same form as the
0-1 programming formulation of a max-flow\min-cut prob-
lem [5]. The minimum-cost closed set problem can thus be
solved in polynomial time by computing the s− t mincut in a
derived arc-weighted directed graph [5, 6].

2.2. Optimal surface segmentation as a minimum-cost
closed problem

In this section, we briefly review the method proposed by Li et
al. [4] for optimal single surface segmentation. The solution
to the optimal surface segmentation problem is obtained by
computing the minimum-cost closed set in a node-weighted
directed graph. The key innovation of this method resides
in the construction of the node-weighted directed graph that
allows the transformation of the optimal surface segmenta-
tion problem into the problem of computing a minimum-cost
closed set.

A volumetric image I can be viewed as a 3D matrix I(x, y, z).
The desired optimal surface in I is assumed to be terrain-like
and oriented as shown in Fig. 1(a). Let Nx, Ny and Nz

denote the size of the image I in x-, y- and z-dimensions,
respectively. A feasible surface S in I is defined by a func-
tion S : (x, y) → S(x, y), where x ∈ X = {0, ..., Nx − 1},
y ∈ Y = {0, ..., Ny − 1} and S(x, y) ∈ Z = {0, ..., Nz − 1}.
Note that any feasible surface intersects with exactly one
voxel of each column of voxels parallel to the z-axis, and
the entire surface consists of exactly Nx × Ny voxels. The
feasibility of a surface is further constrained by application-
specific smoothing constraints enforced by two parameters,
∆x and ∆y , that are used to define the smoothness con-
straint along x- and y-directions, respectively. Specifically, if

(x, y, z) and (x+1, y, z′) are two voxels on a feasible surface,
then |z − z′| ≤ ∆x. Similarly, if (x, y, z) and (x, y + 1, z′)
are two voxels on a feasible surface, then |z − z′| ≤ ∆y .
Smaller values of ∆x and ∆y enforce stronger smoothing
constraints on a feasible surface.

Let c : (x, y, z)→ c(x, y, z) be a cost function that assigns a
cost c(x, y, z) to each voxel (x, y, z) in the image I. The cost
c(x, y, z) is an arbitrary real number that is inversely related
to the likelihood that the desired surface contains the voxel
(x, y, z). The cost of a feasible surface in I is then equal to
the sum of the costs of all the voxels belonging to the surface.
Thus, the optimal surface segmentation problem is to search
for a feasible surface S∗ with the minimum cost among the
set of all feasible surfaces S definable in the image I . Specifi-
cally, the optimal surface segmentation problem can be stated
as: S∗ = arg min

S∈S

∑
x

∑
y
c(x, y, S(x, y)).

A node-weighted directed graph G = 〈V,E〉 is constructed
to obtain a solution to the above-stated optimal surface seg-
mentation problem as follows. Every voxel (x, y, z) ∈ I is
associated with a vertex V (x, y, z) in the graph G. The cost
or weight w(x, y, z) assigned to the vertex V (x, y, z) is de-
fined as follows:

w(x, y, z) =
{

c(x, y, z) if z = 0
c(x, y, z)− c(x, y, z − 1) otherwise.

(2)
For each (x, y) pair in the image I such that x ∈ X and
y ∈ Y , we refer to the vertex-subset {V (x, y, z)|∀z ∈ Z}
as the (x, y)-column of G and denote it by Col(x, y). Two
(x, y)-columns are considered to be adjacent if their cor-
responding (x, y) coordinates are neighbors under a given
neighborhood system. For the purposes of this paper, we
assume a 4-neighborhood setting. In this case, the col-
umn Col(x, y) is adjacent to Col(x + 1, y), Col(x − 1, y),
Col(x, y + 1), and Col(x, y − 1). The edge set E of the
digraph G consists of two types of edges, intra-column edges
and inter-column edges, which are defined as follows [4]:

• intra-column edges: Within each column Col(x, y), every
vertex V (x, y, z), z > 0 has a directed edge to the vertex
V (x, y, z − 1).

• inter-column edges: Without loss of generality, consider two
adjacent columns Col(x, y), x < Nx − 1, and Col(x +

1, y) along the x-direction. Each vertex V (x, y, z) ∈
Col(x, y) is connected by a directed edge to the vertex
V (x + 1, y, max(0, z −∆x)) ∈ Col(x + 1, y). Also, a di-
rected edge is established from the vertex V (x + 1, y, z) ∈
Col(x + 1, y) to the vertex V (x, y, max(0, z − ∆x)) ∈
Col(x, y). Similar construction is performed for two ad-
jacent columns along the y-direction. Figure 1(b) depicts
the edges between the two adjacent columns along the x-
direction. Note that these inter-column arcs are responsible
for guaranteeing that if a voxel (x, y, z) is on a feasible



surface S, then its neighboring voxel (x + 1, y, z′) on the
surface S along the x-direction satisfies the required smooth-
ness constraint, |z − z′| ≤ ∆x. The same holds for two
adjacent columns along the y-direction. Note that ∆x and
∆y must be greater than zero to allow the segmentation result
to be a non-planar surface.

With the above-described graph-construction, it is easy to
show that the minimum-cost closed set of the graph G solves
the optimal surface segmentation problem.

(a) (b)

Fig. 1. Optimal surface segmentation problem. (a) Depic-
tion of orientation of the optimal surface, and (b) two adja-
cent columns along the x-direction of the constructed node-
weighted digraph.

3. DIAPHRAGM SEGMENTATION

We reformulate the problem of diaphragm segmentation as an
optimal surface segmentation problem to which the solution
is obtained by computing the minimum-cost closed set in a
node-weighted directed graph as described in Section 2.2.
The key to achieving a good segmentation result to any given
problem using the formulation detailed in Section 2.2 resides
in the design of a good cost function c(x, y, z) (Eq. 2) and in
the incorporation of the appropriate smoothness constraints.
We leverage prior information about the anatomical loca-
tion of the diaphragm and any available image information
in designing our cost function (Section 3.1). Additionally,
we also modify the graph construction to introduce a soft
planar smoothness constraint on the solution of the optimal
surface segmentation problem (Section 3.2). Finally, as a
post-processing step, we limit the scope of the segmenta-
tion result to the inner thoracic region which is obtained as
described by Chittajallu et al. [7].

3.1. Cost Function

Based on prior knowledge about the anatomical location of
the diaphragm, we require the optimal surface to pass through
the set WLS of voxels belonging to the bottom surface of the
left and right lungs. In order to incorporate this prior knowl-
edge, we first perform a rough segmentation of the lungs us-
ing simple thresholding and connected component analysis.
Figure 2(b) depicts an overlay of the lung masks in a coro-
nal slice of the non-contrast CT scan. We can then easily
identify the set WLS as the “bottom-most” voxels of the seg-
mented lungs in each (x, y)-column. A very low cost must be
assigned to these voxels in order to impose a hard constraint

on the computed optimal surface to pass through these voxels.
Additionally, a very high cost is assigned to setWL composed
of all the voxels inside the lung mask to stop the optimal sur-
face from leaking into the lungs. In the case where none of
the voxels in an (x, y)-column belong to the set WLS , which
occurs at the heart-diaphragm interface, we require the opti-
mal surface to pass through the nearest fat-muscle transition.
This can be captured by the presence of a strong z-gradient
in that location. Additionally, our experiments with the re-
sponse of various features at the heart-diaphragm interface in-
dicate the local entropy to be most discriminative. However,
entropy does not encode edge direction which is provided by
the z-gradient. Figures 2(c,d) depict the z-gradient and the
local Shannon entropy in a coronal slice. To take advantage
of both, we impose hard constraints on the set WE of all vox-
els with an entropy value greater than a certain threshold by
assigning a very low cost. Based on the above considerations,
we design the cost function as follows:

c(x, y, z) =

{
cmin if (x, y, z) ∈ {WLS

⋃
WE} ,

cmax if (x, y, z) ∈WL,
−gz(x, y, z)− cmin otherwise.

(3)
where gz denotes the absolute value of the z-gradient, with
cmin < min(−gz) and cmax > max(−gz).

3.2. Modified Graph Construction

The smoothness of the solution obtained from the optimal
surface segmentation problem can be controlled using the
smoothness parameters ∆x and ∆y (see Section 2.2). The
smaller the values of these parameters, the smoother will be
the resulting surface. In general, smaller values are used for
these parameters to stop the surface from jumping between
any strong spurious edges in neighboring columns. However,
if these spurious edges are located farther apart then there
might be a scenario in which the optimal surface will pass
through these edges in spite of setting smaller values for the
smoothness parameters. This was precisely the problem that
we experienced during our experiments. This demonstrated
the need for a soft planar smoothness constraint to penalize
the optimal surface whenever it deviates from being locally
plane-like unless credible information is available about the
presence of the diaphragm at that location. From the point
of view of a minimum closed set problem, setting ∆x and
∆y equal to zero will force the optimal surface to be strictly
a plane, which is not desired. Hence, in order to enforce a
softer plane-like smoothness constraint, we migrate to the
integer programming formulation of the minimum closed
set problem (see Eq. 1). More clearly, we add planar inter-
column edges between the voxel V (x, y, z) ∈ Col(x, y)
and its in-plane 4-neighbors V (x+ 1, y, z) ∈ Col(x+ 1, y),
V (x−1, y, z) ∈ Col(x−1, y), V (x, y+1, z) ∈ Col(x, y+1),
and V (x, y− 1, z) ∈ Col(x, y− 1). Let P be the set of these
in-plane inter-column edges. We then use different values of



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Depiction of (a) raw Dicom Image, (b) Lung Mask
(blue), (c) z-gradient, (d) entropy, and (e,f) segmentation re-
sults obtained with and without modified graph construction,
respectively. (g,h) 3D Visualization of the diaphragm seg-
mentation in two datasets.

λ in Eq. 1 for different edges in our graph. Specifically, we
use a smaller value of λ (i.e., λp) for all the edges in the set
P and we use a very high value (infinity) for all other edges
of the graph. Doing so penalizes the optimal surface with a
value λ = λp at each location where it deviates from a plane
locally.

4. RESULTS

We applied the proposed method on non-contrast cardiac
EBCT scans of 7 randomly selected patients. Each CT scan
has 50 to 60 axial slices with a pixel size of 0.68 mm ×
0.68 mm and slice thickness of 3 mm. We evaluate the
results of the proposed method by measuring their agree-
ment/disagreement with manual segmentation performed by
an expert. In Table 1, we depict the Dice similarity coefficient
(DSC) and Hausdorff distance obtained using the proposed
method. Figures 2(e,f) depict the segmentation result ob-
tained in a coronal slice using our method with and without
the modified graph construction described in Section 3.2.
The “jumping” problem of the optimal surface discussed in
Section 3.2 due to some spurious z-gradients can be observed
in Fig. 2(f). Figures 2(g,h) depict 3D visualizations of the
diaphragm segmentation in two datasets.

Table 1. Similarity and Dissimilarity measures
DSC Hausdorff Dist. (mm)

mean ± stddev 0.942 ± 0.010 18.339 ± 3.655
range [ 0.922, 0.954 ] [ 13.535, 23.542 ]

5. CONCLUSION

In this paper, we have presented a fully automatic graph-based
method for the segmentation of the diaphragm in non-contrast
cardiac CT data with very encouraging results. The proposed
method can be easily adapted for the data from other imaging
modalities (e.g., CTA and MRI).
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