
Chapter 14
Exploiting Score Distributions
for Biometric Applications

Panagiotis Moutafis and Ioannis A. Kakadiaris

Abstract Biometric systems compare biometric samples to produce matching
scores. However, the corresponding distributions are often heterogeneous and as a
result it is hard to specify a threshold that works well in all cases. Score normal-
ization techniques exploit the score distributions to improve the recognition per-
formance. The goals of this chapter are to (i) introduce the reader to the concept of
score normalization and (ii) answer important questions such as why normalizing
matching scores is an effective and efficient way of exploiting score distributions,
and when such methods are expected to work. In particular, the first section
highlights the importance of normalizing matching scores; offers intuitive examples
to demonstrate how variations between different (i) biometric samples, (ii) modal-
ities, and (iii) subjects degrade recognition performance; and answers the question
of why score normalization effectively utilizes score distributions. The next three
sections offer a review of score normalization methods developed to address each
type of variation. The chapter concludes with a discussion of why such methods
have not gained popularity in the research community and answers the question of
when and how one should use score normalization.

14.1 Introduction

The goal of biometric systems is to determine whether or not (two or more) bio-
metric samples have been acquired from the same subject. This problem is usually
formulated as a verification or an open-set identification task. Regardless of the task
or biometric trait used, one matching score is obtained for each pairwise compar-
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ison of biometric samples. This number reflects how similar the matched samples
are. To reach a decision, the matching scores obtained are compared to a threshold.
Ideally, the matching score distributions of the match and nonmatch scores would
be separable. Hence, a single threshold would always yield a correct classification.
In real-life applications, though, these distributions overlap greatly. To address this
problem, many algorithms have been and continue to be developed with the goal of
yielding more robust feature sets with better discriminative properties. For example,
improved landmark detection and illumination normalization can significantly
improve face recognition performance. However, such algorithms cannot always
produce the desired results. Even worse, they cannot address inherent variations
that increase the overlap of the match and nonmatch score distributions. In this
section, we identify the sources of these variations and demonstrate how score
normalization methods can effectively and efficiently improve recognition perfor-
mance. The sources of variations reported in the literature can be grouped into three
categories, as follows:

1. Acquisition conditions: Variations during data acquisition include differences in
pose, illumination, and other conditions. For example, let us assume that we
have a gallery of biometric samples. Let us further assume that all images in the
gallery are frontal facial images captured under optimal illumination conditions.
If a probe that is captured under similar conditions is submitted to the matching
system, we can expect that the matching scores obtained will be high on
average, even if the subject depicted is not part of the gallery. On the other hand,
if another probe is captured under different conditions and then compared with
the gallery, we can expect that the matching scores obtained will be low on
average, even if the subject depicted is part of the gallery. In other words, the
matching score distributions obtained for the two probes are heterogeneous. In
this scenario, it would be difficult to correctly classify the two probes using the
same threshold.

2. Multimodal systems: Unimodal systems are usually vulnerable to spoofing
attacks [1] and prone to misclassifications for several reasons, such as lack of
uniqueness and noisy data [9]. Multimodal biometric systems utilize information
from multiple sources to address these challenges. Such sources may include
different biometric traits (e.g., face, iris, and fingerprint) or different pipelines
that utilize the same input data. However, fusing the information obtained from
different modalities is not easy. The reason is that the matching score distri-
butions produced by different modalities are heterogeneous, even if the gallery
and probe subjects are the same. This effect complicates the fusion process. To
provide visual evidence of this source of variation, we used pairwise matching
scores for the face and iris traits (i.e., 2 × 3,296,028 distances) obtained from the
CASIA-Iris-Distance database [37]. This dataset comprises 2,567 images
obtained from 142 subjects, most of whom are graduate students at CASIA. The
purpose of collecting these images was to promote research on long-range and
large-scale iris recognition. Specifically, the images were acquired using a
long-range multimodal biometric image acquisition and recognition system
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developed by the CASIA group. The same samples were used to extract features
for the face and iris traits, independently. The CASIA group provided us with
the corresponding distances and the formula score = max(distance) − distance
was used to convert them into scores. The corresponding boxplots are depicted
in Fig. 14.1. As illustrated, the corresponding distributions are heterogeneous. In
particular, the face matching scores have a higher median value than the iris
matching scores. To assess the discriminative properties of the two modalities,
we computed the corresponding receiver operating characteristic (ROC) curves.
The area under the curve (AUC) obtained for the face matching scores is
93.48 %, while the AUC obtained for the iris matching scores is 94.17 %. Even
though the two biometric traits yield comparable performance and the features
were extracted using the same images, fusing the corresponding information is
not straightforward.

3. Subject variability: It has been observed that, when assessing the performance of
biometric systems in large populations, some subjects are easier to recognize
than others. Similarly, some subjects can easily spoof the system. This phe-
nomenon was first reported in the literature by Doddington et al. [5]. In that
paper, the subjects were classified as sheep, goats, lambs, and wolves,
depending on the statistical properties of the matching scores obtained for
certain groups of subjects. This subject-specific variability of the matching
scores is known as biometric menagerie and hinders the selection of a threshold
that works well for all subjects.

Why do such methods work? As illustrated, biometric systems are vulnerable to
inherent variations that increase the overlap of the match and nonmatch score
distributions, thus degrading their recognition capability. Regardless of the source
of variation, the challenge that needs to be addressed is the same: the matching

Fig. 14.1 Boxplots of the match and nonmatch scores obtained using two different modalities.
The two boxplots on the left correspond to face matching scores, while the two boxplots on the
right correspond to iris matching scores
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score distributions are heterogeneous. Score normalization methods are techniques
that map the matching scores to a common domain where they are directly com-
parable. In other words, they transform heterogeneous distributions into homoge-
neous ones.

Usually, two or more sources of variations occur at the same time. For example,
a multimodal biometric system employed for large-scale open-set identification
would be subject to all three types of variations. In the subsequent sections, we
focus on one type of variation at a time. Specifically, we constrain our interest to the
task for which the effect of the source of variation is more pronounced and review
score normalization methods that address it more effectively.

14.2 Acquisition Conditions

The open-set identification task (also known as watch-list) consists of two steps:
(i) a probe is matched with the gallery samples, and (ii) a candidate list is returned
with the gallery samples that appear to be the most similar to it. This task can thus
be viewed as a hard verification problem (see Fortuna et al. [7] for a more detailed
discussion). Consequently, the recognition performance of such systems is signif-
icantly affected by variations in the acquisition conditions for both the gallery
samples and the probes. Specifically, each time a probe is compared with a given
gallery, the matching scores obtained follow a different distribution. Score nor-
malization techniques address this problem by transforming the corresponding
matching score distributions to homogeneous ones. Hence, a global threshold can
be determined that works well for all submitted probes. In the following, we review
some of the most popular methods tailored for this task.

Z-score: Due to its simplicity and good performance, this is one of the most
widely used and well-studied techniques. In particular, it is expected to perform
well when the location and scale parameters of the score distribution can be
approximated sufficiently by the mean and standard deviation estimates. When the
matching scores follow a Gaussian distribution, this approach can retain the shape
of the distribution. The most notable limitations of Z-score are as follows: (i) it
cannot guarantee a common numerical range for the normalized scores and (ii) it is
not robust because the mean and standard deviation estimates are sensitive to
outliers.

Median and median absolute deviation (MAD): This method replaces the mean
and standard deviation estimates in the Z-score formula with the median value and
the median absolute deviation, respectively. Therefore, it addresses the problem of
lack of robustness due to outliers. However, it is not optimal for scores that follow a
Gaussian distribution.

W-score [36]: Scheirer et al. proposed a score normalization technique that
models the tail of the nonmatch scores. The greatest advantage of this approach is
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that it does not make any assumptions concerning the score distribution. Also, it
appears to be robust and yields good performance. However, to employ W-score
the user must specify the number of scores to be selected for fitting. While in most
cases it is sufficient to select as few as five scores, selecting a small number of
scores may yield discretized normalized scores. Consequently, it is not possible to
assess the performance of the system in low false acceptance rates or false alarm
rates. On the other hand, selecting too many scores may violate the assumptions
required to invoke the extreme value theorem. Another limitation of W-score is that
it cannot be applied to multisample galleries unless an integration rule is first
employed. As a result, it is not possible to obtain normalized scores for each sample
independently. As it will be demonstrated, a recently proposed framework
addresses this problem and extends the use of W-score to multisample galleries.

Additional score normalization techniques (e.g., tanh-estimators and double
sigmoid function) are reviewed in [8]. Finally, some score normalization methods
have been proposed that incorporate quality measures [27, 28, 33]. However, they
are tailored to the verification task and have not been evaluated for open-set
identification. The aforementioned methods consider the matching scores obtained
for a single probe as a single set. This strategy does not fully utilize the available
information for galleries with multiple samples per subject. To address this prob-
lem, Moutafis and Kakadiaris [15, 16] introduced a framework that describes how
to employ existing score normalization methods (and those to be invented) more
effectively. First, we review the theory of stochastic dominance, which theoretically
supports their framework.

Definition The notation XJFSD Y denotes that X first-order stochastically domi-
nates Y, that is

PrfX[ zg� PrfY [ zg; 8z: ð14:1Þ

As implied by this definition, the corresponding distributions will be ordered.
This is highlighted by the following lemma (its proof may be found in [42]).

Lemma Let X and Y be any two random variables, then

XJFSDY ) E X½ � �E½Y �: ð14:2Þ

An illustrative example of first-order stochastic dominance is depicted in
Fig. 14.1 of Wolfstetter et al. [42] where �FðzÞJFSD �GðZÞ. Note that the first-order
stochastic dominance relationship implies all higher orders [6]. In addition, this
relation is known to be transitive as implicitly illustrated by Birnbaum et al. [4].
Finally, the first-order stochastic dominance may also be viewed as the stochastic
ordering of random variables.
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Algorithm 1 Rank-Based Score Normalization

Input: Sp =
⋃
i{Spi }, f

Step 1: Partition Sp into subsets
1: Cr = { /},∀r
2: for r = 1 : maxi{|Spi |} do
3: for all iεI do
4: Cr =Cr

⋃
Spi,r

5: end for
6: end for

Step 2: Normalize each subset Cr

7: Sp,N = { }
8: for r = 1 : maxi{|Spi |} do
9: Sp,N = Sp,N

⋃
f (Cr)

10: end for
Output: Sp,N

0

/0

Rank-Based Score Normalization (RBSN): For the case of systems with multi-
sample galleries, Moutafis and Kakadiaris [15, 16] proposed a RBSN algorithm that
partitions the matching scores into subsets and normalizes each subset indepen-
dently. An overview of the proposed RBSN framework is provided in Algorithm 1.
The notation used is the following:
Sp the set of matching scores obtained for a given probe p when compared with a

given gallery,
Spi the set of matching scores that correspond to the gallery subject with

identity = i, Spi �Sp,
Spi;r the ranked-r score of Spi ,
Sp,N the set of normalized scores for a given probe p,
Cr the rank-r subset, [rCr ¼ Sp,
|d| the cardinality of a set d,
I the set of unique gallery identities, and
f a given score normalization technique

An illustrative example of how to apply the proposed approach is provided in
Fig. 14.2. Let us assume that there are three subjects in the gallery, namely X, Y, and
Z. Let us further assume that three biometric samples are available for X (denoted
by X1, X2, and X3), two samples are available for Y (denoted by Y1 and Y2), and
three samples are available for Z (denoted by Z1, Z2, and Z3). Finally, let us assume
that a probe is submitted to the system (denoted by pi) and matched with all the
gallery samples. Existing approaches would consider the obtained matching scores
as a single set and normalize them in a single step. In contrast, the first step of the
RBSN framework is to rank the matching scores for each gallery subject inde-
pendently. For instance, if the matching scores obtained for X are S(X1, pi) = 0.7, S
(X2, pi) = 0.8, and S(X1, pi) = 0.6, the corresponding ranks are 2, 1, and 3,
respectively. If for subject Y we obtain S(Y1, pi) = 0.4, S(Y2, pi) = 0.3, then the ranks
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are 1 and 2, while if for subject Z we obtain S(Y1, pi) = 0.2, S(Y2, pi) = 0.1, S(Y1,
pi) = 0.7, then the corresponding ranks are 2, 3 and 1 respectively. The second step
of RBSN is to use the rank information to partition the matching scores into subsets.
Specifically, the matching scores that ranked first comprise the subset C1 = {0.8,
0.4, 0.7}, the ranked second scores comprise the subset C2 = {0.7, 0.3, 0.2}, and the
ranked third scores comprise the subset C3 = {0.6, 0.1}. By invoking the theory of
stochastic dominance, it is straightforward to demonstrate that the rank-based
partitioning imposes the subsets’ score distributions to be ordered (i.e., heteroge-
neous). To illustrate this point, each curve in Fig. 14.3 depicts the probability
density estimate that corresponds to such subsets obtained from a gallery with six
samples per subject. By normalizing the scores of each subset individually, the
corresponding distributions become homogeneous and the system’s performance
improves. Hence, going back to our example, the matching scores of each set C1,

Fig. 14.2 Overview of the rank-based score normalization algorithm. The notation S(X1; pi) is
used to denote the score obtained by comparing a probe pi to the biometric sample 1 of a gallery
subject labeled X

Fig. 14.3 Each curve depicts the probability density estimate corresponding to a Cr subset. Each
subset Cr was constructed by Step 1 of RBSN using the set Sp for a random probe p
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C2, and C3 are normalized independently. Finally, the user might choose to fuse the
normalized matching scores for each subject to consolidate the corresponding
information. The RBNS framework (i) can be used in conjunction with any score
normalization technique and any fusion rule, (ii) is amenable to parallel program-
ming, and (iii) is suitable for both verification and open-set identifications. Two of
the most important implications of this work are that (i) multiple samples per
subject are exploited more effectively compared to existing methods, which yields
improved recognition accuracy and (ii) improvements in terms of identification
performance on a per-probe basis are obtained. We highlight selected results from
[16] to illustrate these two points. First, the impact of the number of same-subject
samples on the recognition performance was assessed. To this end, the UHDB11
dataset [38] was used which was designed to offer a great variability of facial data in
terms of acquisition conditions. Specifically, 72 light/pose variations are available
for 23 subjects, resulting in 2,742,336 pairwise comparisons. Six samples per
subject were selected (one for each illumination condition) to form the gallery and
the rest samples were used as probes. The matching scores used were provided by
Toderici et al. [39]. Random subsets of one, three, and five samples per gallery
subject were selected and each time the ROC curve and the corresponding AUC
values were computed. This procedure was repeated 100 times using the unpro-
cessed, raw matching scores, Z-score normalized scores, and RBSN:Z-score nor-
malization scores. The obtained results are summarized in Fig. 14.4. As illustrated,
RBSN:Z-score utilizes more effectively multiple samples per subject compared to
Z-score. Second, the impact on the separation between the match and nonmatch
scores on a per-probe basis was assessed. To this end, the FRGC v2 dataset was
used that comprises 4,007 samples obtained from 466 subjects under different facial
expressions. The 3D face recognition method of Ocegueda et al. [19] was used to
extract the signatures and the Euclidean distance to compute the dissimilarity

Fig. 14.4 Depicted are the boxplots for: (1) raw scores; (2) Z-score; and (3) RBSN:Z-score, when
one, three, and five samples per gallery subject are randomly selected from UHDB11
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values. The gallery was formed by randomly selecting 1,893 samples from 350
subjects. The rest were used as probes, resulting in an open-set problem. The
Rank-1 errors for probes that belong to the gallery are as follows: (i) raw matching
scores 0.74 %, (ii) Z-score normalized scores 0.74 %, and (iii) RBSN:Z-score
normalized scores 0.66 %. Z-score and most existing approaches consist mostly of
linear transformations, and therefore, they do not alter the order of the matching
scores. Hence, the Rank-1 error for the raw matching scores and the normalized
ones is the same. The RBSN algorithm, however, addresses this problem and has
the potential to improve the accuracy of the rankings as illustrated.

To avoid confusion, we refer the readers to [15, 16] where they can find more
implementation details, insights, experimental results, along with two versions of
the RBSN algorithm that (i) fully utilizes the gallery versus gallery matching scores
matrix and (ii) dynamically augments the gallery in an online fashion.

14.3 Multimodal Systems

Information fusion in the context of biometrics is a very challenging problem.
Therefore, it has been receiving increasing attention over the past few years
(Fig. 14.5). The most common approaches employ feature-level or score-level
fusion. Methods in the first category (i) utilize the feature representation obtained
for each modality to learn a common representation or (ii) learn rules that directly
compare the multimodal representations to compute a matching score. Methods in
the second category compute one matching score per pairwise comparison for each
modality and then they either: (i) learn fusion rules that combine the information
into a single matching score, or (ii) transform the scores to a standard form (i.e.,
score normalization) and then apply fixed fusion rules. In this section, we limit our
scope to score-level fusion methods. The selected approaches were identified after
conducting a systematic search of the literature that covered the years 2011–2014.
To ensure that the latest papers have been included in our search, we focused on

Fig. 14.5 Depiction of the number of papers published during the years 2004–2014 that include
the words biometric and fusion in their title, according to the search engine Google Scholar
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selected conferences in the field of biometrics and computer vision. The venues and
keywords used are listed in Table 14.1. Papers that include at least one keyword in
their title were reviewed in more detail to determine their relevance and interest-
ingness. However, the number of papers selected was relatively small. To address
this problem, we expanded the breadth of our search to the citations of the selected
papers. We group the reviewed methods in three categories: (i) transforma-
tion-based, (ii) classification-based, and (iii) density-based. Methods in the first
category normalize the matching scores and then employ fixed rules to combine
them. Approaches in the second category usually treat the scores as features and
learn a classifier that determines how similar the compared samples are. Finally,
approaches in the third category estimate the probability density functions for each
class. Such methods can be grouped as generative or discriminative. Generative
methods focus explicitly on modeling the matching score distributions using
parametric or nonparametric models. Discriminative approaches, on the other hand,
focus explicitly on improving the recognition rate obtained by the fused scores. An
overview of the categorization of score-level fusion methods is presented in
Fig. 14.6, while an overview of the reviewed papers is offered in Table 14.2.

Transformation-based approaches normalize the matching score distributions of
each modality independently. Consequently, the corresponding distributions
become homogeneous and fixed fusion rules can be applied, which simplifies the
fusion process. Kittler et al. [10] have studied the statistical background of fixed
fusion rules. Two of the most popular ones are the sum and max operators. The
former is implemented by a simple addition under the assumption of equal priors.
Even though this rule makes restrictive assumptions, it appears to yield good
performance as demonstrated in the literature [8, 10]. The latter makes less
restrictive assumptions and it is also very simple to implement. Specifically, the
output of this rule is defined to be the maximum score obtained. Wild et al. [41]
employed a median filtering approach for score fusion to increase robustness to
outliers. Specifically, this method disregards matching scores for which the distance
from the median matching score exceeds a certain threshold. The authors employ

Table 14.1 Conferences
used for identifying fusion
methods. Papers that include
at least one of the keywords in
their title were considered in
our review

Conferences

Conference on Computer Vision and Pattern Recognition
(CVPR)

European Conference on Computer Vision (ECCV)

International Conference on Computer Vision (ICCV)

International Conference of the Biometrics Special Interest
Group (BIOSIG)

International Conference on Biometrics: Theory, Applications
and Systems (BTAS)

International Conference on Biometrics (ICB)

International Joint Conference on Biometrics (IJCB)

Keywords: Fusion, Information, Multimodal, Score
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the proposed method to fuse matching scores obtained from fingerprints with
liveliness values. These values denote the likelihood that the submitted sample is
genuine and does not belong to an attacker seeking to spoof the system. As a result,
this 1-median outlier detection approach alleviates negative effects to the recogni-
tion performance due to matching score anomalies, while it increases security.
Scheirer et al. [35] proposed a statistical meta-recognition approach that relies on
Weibull distribution. Specifically, the proposed approach models the tail of the

Fig. 14.6 Overview of the categorization of score-level fusion approaches

Table 14.2 Overview of score-level fusion papers. The column “Mapping” denotes whether the
operations performed are linear or non-linear, while the column “Learning” denotes whether or not
a method relies on offline training. The column “Model” denotes whether a method is
Transformation-based, Classification-based, or Density-based (i.e., parametric or non-parametric)

Name Year Mapping Learning Model

Wild et al. [41] 2013 Linear Adaptive Transformation

Scheirer et al. [35] 2011 Nonlinear Offline Transformation

Nguyen et al. [18] 2014 Linear Offline Transformation

Mezai et al. [14] 2011 Linear Offline Transformation

Scheirer et al. [34] 2012 Nonlinear Offline Transformation

Zuo et al. [44] 2012 Linear Adaptive Transformation

Poh et al. [31] 2012 Linear Offline Transformation

Makihara et al. [12] 2014 Nonlinear Offline Nonparametric

Makihara et al. [13] 2011 Linear Offline Parametric

Poh et al. [30] 2011 Linear Offline Nonparametric

Liu et al. [11] 2014 Linear Offline Classification

Poh et al. [26] 2012 Nonlinear Offline Classification

Tyagi et al. [40] 2011 Linear Offline Classification
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nonmatch scores obtained for a single probe and invokes the extreme value theorem
to estimate the probability that the top-K matching scores contain an outlier (i.e., a
match score). The decision-making process relies on the rejection rate of the null
hypothesis, which states that a match score is contained in the top-K scores.
Nguyen et al. [18] proposed a new approach based on the Dempster–Shafer theory.
The basic belief assignment (BBA) function is represented as the hypothesis that
the query and template belong (i) to the same class, (ii) to a different class, or
(iii) that the relationship of the two cannot be defined. This model can naturally
incorporate uncertainty measures into the model, which are related to the quality of
the data and other factors. Mezai et al. [14] also proposed a Dempster–Shafer based
algorithm. The fused scores are assigned into three categories: genuine, impostors,
and unclassified. The authors argue that this approach reduces the half total error
rate defined as the average of the false acceptance and false rejection rates.
However, it does not consider that these metrics are affected by the unclassified
data. Scheirer et al. [34] proposed a multiattribute calibration method for score
fusion. Specifically, their approach fits a Weibull distribution to the flipped negative
decision scores of an SVM classifier. Next, it normalizes the transformed scores
using the cumulative density function. The multiattribute fusion is performed using
the L1 norm. That is, for a given query, the target samples that maximize the L1
norm for each of the attributes are found. Unlike existing approaches that weigh all
attributes equally, the proposed method finds the target samples that are most
similar to most but not all the attributes. Zuo et al. [44] proposed a new approach
for matching short-wave infrared (SWIR) and visible data. The images are first
filtered and encoded using well-known filters. The encoded responses are then split
into multiple nonoverlapping blocks and bin histograms are generated. The authors
observed that the zero values obtained for SWIR and visible images are highly
correlated. Hence, they proposed a score normalization method that addresses this
problem. Specifically, the symmetric divergence between a visible template and a
SWIR template is first computed. Then, a normalization factor is defined as the
average difference of the computed divergence and the matching similarity scores
obtained for an SWIR probe template. Finally, the normalized scores are computed
as the divergence of a given visible image and a given SWIR template, minus the
normalization factor and the symmetric divergence computed in the previous two
steps. Poh et al. [31] proposed a client-specific score normalization approach.
Specifically, the authors proposed three discriminative strategies: (i) dF-norm,
(ii) dZ-norm, and (iii) dp-norm. These are defined as the probability of the subject
being a client given the corresponding class mean and variance for the client and
impostor. To address the problem of few client samples, the client-specific mean
score is computed as a weighted average of the client and the global client mean
scores. Moutafis and Kakadiaris [17] proposed a RBSN framework for multibio-
metric score fusion. Unlike existing approaches that normalize the matching scores
from each modality independently, the multi rank-based score normalization
(MRBSN) framework takes into consideration inherent correlations between the
data. The first step is to normalize the matching scores of each modality
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independently as usual. The second step, though, is to join the normalized scores to
form a single set. Finally, the joined set of scores is processed using RBSN. The
implementation is summarized in Algorithm 2. The additional notation is the
following:
SJ the set of matching scores obtained for a given probe using the modality

denoted by J,
SJ,N the set of normalized scores for a given probe,
S the set of joined normalized score sets, S ¼ [JSJ;N ,
SN2 the set of “twice” normalized scores, and
R a given fusion rule.

An illustrative example of how to apply MRBSN is provided in Fig. 14.7. Let us
assume that facial and iris data are available for three subjects, namely X, Y, and
Z. The superscript F denotes that the biometric sample at hand was derived from
face data, while the superscript I is used for the iris data. Let us further assume that
a probe comprising face pFi and iris pIi data is submitted to the system. The matching
score obtained for the face modality for subject X is denoted by SðXF ; pFi Þ, while the
matching score obtained for the iris modality is denoted by SðXI ; pIi Þ. After nor-
malizing the matching scores for the two modalities independently, we obtain the
normalized scores. The normalized scores for the face and iris modalities for subject
X are denoted by SNðXF ; pFi Þ and SNðXI ; pIi Þ, respectively. The normalized scores

Fig. 14.7 Overview of the rank-based score normalization algorithm. The notation S(X1; pi) is
used to denote the score obtained by comparing a probe pi to the biometric sample 1 of a gallery
subject labeled X
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for the two modalities are then joined to form a single set. Since the scores are no
longer distinguished based on the modality, the RBSN algorithm can be employed
to leverage the multiple scores per subject. Experimental results using the CASIA
dataset illustrate the benefits of this approach. Specifically, one sample from each
modality was used for 71 subjects to define the gallery. The rest were used as
probes. This process was repeated 50 times and the matching scores were nor-
malized using Z-score, W-score, MRBSN:Z-score, and MRBSN:W-score. The
mean values of the verification performance obtained at false acceptance rate equal
to 10−2 are 90.90, 91.08, 85.46, and 86.29 %, respectively. For a more detailed
analysis of the implementation and complete results, we refer the readers to [17].

Algorithm 2Multi-Rank-Based Score Normalization

Input: SJ, Z, R
Step 1: Normalize each SJ independently
for all J do
SJ,N = Z(SJ)

end for
Step 2: Join SJ,N

S=
⋃

J S
J,N

Step 3: Employ RBSN
SN2 = RBSN(S,Z)
Step 4: Fuse the “twice” normalized scores
SN2 = R(SN2)
Return SN2

Density-based methods estimate the parameters of the probability density
functions for each class by modeling a function of the likelihood ratio, or represent
the distributions using histogram bins. Methods in the former category yield better
results when the assumed model is correct. However, they fail when this
assumption does not hold. On the other hand, methods in the second category can
handle any type of distribution. Nevertheless, they do not scale well because the
fitting process is computationally expensive. Makihara et al. [12] proposed a
method that uses floating control points (FCP) for binary classification. A stratified
sampling is employed multiple times to initialize a k-means clustering algorithm.
Then, the generalized Delaunay triangulation is applied on the FCP (i.e., the cluster
means) and the posterior distribution (PD) for the FCP is estimated. The PD is
estimated by minimizing an energy function, which includes a smoothness con-
straint. Finally, the PD of the data is represented as an interpolation or extrapolation
of the FCP PD based on the triangulation mesh. Makihara et al. [13] proposed
another method that relies on the Bayes error gradient (BEG) distribution. The
energy function for BEG distributions relies on the data fitness of a multilinear
interpolation for each of the lattice-type control points. Furthermore, the authors
incorporate prior knowledge into the model by strengthening the smoothness
parameters and by adding monotonically increasing constraints upon the BEG
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distribution. The experimental results indicate that the BEG with prior information
is competitive with the sum-rule, even when the size of the client training samples
decreases. Poh et al. [30] proposed a heterogeneous information fusion approach for
biometric systems. Depending on the information sources used, the authors dis-
tinguish two cases: (i) independent and (ii) dependent score-level fusion. For the
first case, the authors proposed a homogeneous fusion scheme (i.e., Naive Bayes),
which is defined as the sum of the logit conditional probabilities of a genuine
matching score given the source information. For the second case, the authors used
the sum of the logit bind probabilities. The conducted experiments demonstrate that
greater performance gains are obtained for the heterogeneous case.

Classification-based approaches do not model the distribution of the matching
scores. Instead, they consider the matching scores as features and use them to train
classifiers that discriminate each class. As a result, they provide a trade-off between
accurate recognition and low time complexity. Liu et al. [11] demonstrated that the
variance reduction equal error rate (VR-EER) model proposed by Poh and Bengio
[22] is theoretically incomplete. To address this limitation, they proposed a new
theoretical approach for score-level fusion. In particular, they demonstrated that
under certain assumptions optimal fusion weights can be derived that maximize the
F-ratio. Hence, the proposed approach can always perform at least as well as the best
expert. Poh et al. [26] proposed a temporal fusion bimodal methodology for video
and audio fusion. The audio is processed using Gaussian mixture model with
maximum aposteriori adaptation (MAP-GMM). The video is processed in two ways.
First, features are extracted from each face and each frame using a discrete cosine
transform. Then, the MAP-GMM is applied to compute matching scores, which are
fused using the mean rule. Second, nonuniform local binary pattern features are
extracted followed by Fisher discriminant projection. The corresponding matching
scores obtained are fused using the max rule. The first approach yields multiple
scores, which are used to compute descriptive statistics. A logistic regression model
is then learned that uses these descriptive statistics in conjunction with the scores
obtained from the second approach. Finally, the sound and video modalities scores
are merged using Naive Bayes. This pipeline allows temporal fusion, improves
recognition performance, and increases robustness to spoof attacks. Tyagi et al. [40]
proposed a new method to estimate the Gaussian mixture models using the maxi-
mum accept and reject criteria. The motivation behind this decision is that, by using
the maximum accept and reject criteria instead of the likelihood, the optimization
process focuses more on the classification itself rather than the fitting of a density
model. As a result, increased recognition performance is achieved.

In summary, transformation-based methods are intuitive, simple, and efficient,
but they do not utilize training data. Density-based approaches can be optimal if the
assumptions made hold (i.e., parametric) or can fit the data relying on computa-
tionally expensive operations (i.e., nonparametric). Finally, classification-based
approaches provide a trade-off between accurate recognition and efficiency.
However, they require vast training data to ensure good generalization properties.
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14.4 Subject Variability

Even when the acquisition conditions are controlled, there are still variations in the
matching score distributions. Specifically, the matching scores obtained for dif-
ferent subjects exhibit different statistical properties. Several papers have studied
this phenomenon and different groupings of the subjects have been proposed. The
most popular are the Doddington’s Zoo [5] and Yager and Dunstone’s [43] clas-
sifications. There are different ways to classify subjects into different groups. For
instance, some methods rely on criteria such as the F-ratio, the Fisher ration, and the
d-prime metric [24], while other methods rely on the training matching scores
dataset to rank and order the subjects [24]. Finally, a biometric menagerie index has
been proposed by Poh and Kittler [25] to assess the severity of the biometric
menagerie.

Two of the most common ways to address the problem of subject variability are
(i) user-specific threshold and (ii) user-specific score normalization. In this section,
we review relevant score normalization approaches that work well in a variety of
datasets. Such methods can be grouped into two categories: (i) parametric and
(ii) learning-based.

14.4.1 Parametric-Based Normalization

Parametric approaches make assumptions concerning the matching score distribu-
tions of each subject (or groups of subjects). That is, they model the corresponding
distributions and then transform them into a standard form.

Z-norm: This method focuses on the nonmatch score distribution. Specifically, it
assumes that the corresponding matching scores follow a Gaussian distribution.
Hence, it estimates the corresponding mean and standard deviation values (e.g.,
using a training set) and uses them to standardize each score obtained for that
subject. The distribution of the normalized nonmatch scores has a mean value equal
to 0 and standard deviation equal to 1.

F-Norm: This approach extends the Z-norm method in the sense that it models
both the match and nonmatch score distributions. It relies on the assumption that the
corresponding distributions are Gaussian. Unlike Z-norm, though, it estimates the
mean values for the match and nonmatch scores, which are then used to normalize
the scores. However, the scarce availability of match scores can yield poor esti-
mates for the mean. To address this problem, the corresponding value is estimated
by interpolating the subject-specific match scores mean and the global match scores
mean. The distribution of the normalized nonmatch scores has a mean value equal
to 0, while the distribution of the normalized match scores has a mean value equal
to 1. A more in-depth analysis is offered by Poh and Bengio [21].
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The Test Normalization (T-Norm) [2] It is a variation of the Z-norm method.
However, it is implemented in an online fashion. That is, the nonmatch mean and
standard deviation estimates are computed at test time using an additional cohort of
impostor samples.

Group-Based Normalization: Unlike existing approaches that normalize the
matching scores on a per subject basis, Poh et al. [29] proposed a group-based
normalization scheme. In particular, they cluster the subjects into groups and use
the corresponding information to normalize the matching scores. As a result, the
paucity of match scores is addressed.

14.4.2 Learning-Based Normalization

Learning-based methods employ statistical models with the goal of decreasing the
overlap of the match and nonmatch score distributions.

Model-Specific Log Likelihood Ratio (MS-LLR): The proposed approach seeks a
transformation that optimizes a likelihood ratio test that relies on the match and
nonmatch score distributions [23]. The resulting score normalization method uti-
lizes both match and nonmatch scores. Under the assumption that the standard
deviation of the two populations is the same, the MS-LLR is equal to Z-norm,
shifted by a constant value that is computed on a per subject basis.

Logistic Regression: One way of normalizing scores is to employ logistic
regression. That is, a training set of match and nonmatch scores can be used to train
a logistic regression model such that the output approximates the posterior prob-
ability of an input being a match score. Another way to utilize the logistic
regression is to decompose the Z-norm or F-norm formulas to different terms. Then,
the regression model is employed to learn optimal weights [32] for each of the
terms.

14.5 Conclusion

Utilizing score distributions has the potential to significantly improve the recog-
nition performance. However, methods such as score normalization must be used
carefully and with discretion because inappropriate use may lead to severely
degraded recognition performance. To determine whether it is suitable to exploit
matching score distributions for a certain application, the first step should be to
investigate whether or not there are inherent variations as described in Sect. 14.1.
Depending on the results obtained from this analysis and the application at hand,
the most appropriate score normalization method should be selected. For example,
in the case of multimodal systems, score normalization methods tailored for fusion
should be used. Nevertheless, regardless of the method selected, the validity of the
corresponding assumptions should be checked. For example, before applying
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Z-score, the user should ensure that the matching scores are approximately
Gaussian distributed, and W-score is applicable only to single-sample galleries. To
illustrate the importance of checking the necessary assumptions, we used the Point
and Shoot Challenge (PaSC) dataset [3] and the face recognition system PittPatt
[20]. The PaSC dataset was designed to assess the performance of biometric sys-
tems when inexpensive camera technologies are used to capture images from
everyday life situations. Specifically, it includes 9,376 images from 293 subjects.
For our experiment, we used 659 samples obtained from 117 subjects as a gallery
and 2,739 samples from 122 subjects as probes. That is, images for five subjects are
not included in the gallery, resulting in an open-set problem. The scores were
normalized with W-score and RBSN:W-score using 30 scores to fit the tail of the
distribution. Since there are multiple samples per gallery, the extreme value theo-
rem requirements are violated for W-score but not for RBSN:W-score. The
obtained ROC curves are depicted in Fig. 14.8. As illustrated, W-score results in
degraded verification performance when compared with the verification perfor-
mance obtained using raw scores. The RBSN:W-score, on the other hand, yields
improvements.

As illustrated in this chapter, appropriate utilization of the matching score dis-
tributions can increase recognition performance of biometric systems in a reliable
manner at a relatively low computational cost.
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