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Summary

Thinly sliced serial tissue sections of an organ can be imaged
using optical microscopy at a resolution detailing individual
cells. When the tissue sections are first subjected to in situ
hybridization or immunohistochemistry, these data sets can
be analysed for changes in gene expression and gene products.
Such spatial information is important for understanding the
functional effects of experimental or environmental challenges
to the organism. However, a critical step in analysing these
data sets is mitigating artefacts that result from the preparation
of the tissue sections. In this paper, we describe an automated
method with manual validation tools that together enable
detecting and addressing artefacts including dust particles and
air bubbles.

Introduction

Bioimage informatics is an emerging field requiring
application of biological knowledge to data-intensive problems
(Peng, 2008). The field includes digitally imaged histology,
which is increasingly being utilized to generate quantitative
data, thus escalating the amount of information available at
an accelerating rate. An example of this is high throughput
in situ hybridization for the collection of spatial gene expression
data (Visel et al., 2004). With this approach, gene expression
can be quantified throughout an organ or organism at cellular
resolution (Carson et al., 2005a; Lee et al., 2008). This is a
powerful method not only for detecting functional changes
caused by the experimental environment of the organism
studied, but also for learning more about the biological
mechanisms involved in these functional changes. Such is the
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impact of these histological images that spatially normalized
atlas-based databases have been developed to store quantified
gene expression information from images of a mouse brain
(Carson et al., 2005b; Bello et al., 2007; Lein et al., 2007; Ju
et al., 2010).

The basic approach for digital histology of the whole
mouse brain relies on thin serial sectioned tissue, in situ
hybridization staining, digital imaging and digital analysis of
the stains (Carson et al., 2002). Despite the impact of these
histological databases, there has been little description of the
necessary steps required to ensure that the digital data are
free of artefacts and thus accurately represent the quantitative
spatial distribution of gene expression. Such accuracy becomes
increasingly important as this type of histological data moves
beyond databases and begins to be used for quantitative
assessment of changes in gene expression (McGill et al., 2006;
Yaylaoglu et al., 2006; Fyffe et al., 2008; Gatchel et al., 2008;
Ben-Shachar et al., 2009).

Speed and reliability in image processing are essential
requirements for the analysis of large-scale imaging data.
Although the described serial tissue sectioning procedure
has the advantage over other imaging methods, such as
MRI, of being able to visualize individual cells, tissue section
preparation approaches can produce artefacts in the data.
Tissue deformations – stretching and compactions – have been
addressed in previous publications (Ju et al., 2003, 2006).
For the purpose of this paper, the term artefact will refer
to substances not naturally present such as dust particles
and air bubbles. These artefacts can be misinterpreted as
cells expressing a gene of interest, thus preventing the rapid
and accurate detection of gene expression in the tissue.
Therefore, a critical step in generating accurate quantitative
data is the mitigation of artefacts incurred during the tissue
section preparation process. Although a manual removal
of the artefacts in the image is one potential solution,
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relying exclusively on manual operations takes a substantial
amount of time and requires a knowledgeable operator who
can discern the defects from the gene expression as well
as an understanding of how to best to mitigate artefacts
without compromising the scientific integrity of the analysis.
To ameliorate the process of artefact mitigation, we have
developed a set of algorithms and tools including a graphical
user interface (GUI) that semiautomates the process of
removing artefacts. The goal of the toolkit is to facilitate
application and validation of automated algorithms that
identify and mitigate artefacts in the given set of images
representing serial tissue sections. The underlying principle
for automated artefact detection is to calculate unexpected
differences between a specified image and its neighbouring
images by first warping neighbouring images to match the
shape of the specified image. We detail herein this approach.

Materials and methods

The fundamental steps for automatically detecting artefacts
are data collection, tissue tear repair, image registration with
neighbouring images and comparing the image to registered
neighbouring images. These steps are outlined in Fig. 1 and
detailed herein.

Image data collection

The image data utilized was collected from a serial set of thin
tissue sections of the mouse brain as previously described in
another study (McGill et al., 2006). In summary, a mouse
brain was frozen in a block of OCT and thinly sliced into 448
serial coronal sections each 25 µm thick. Parallelized, high-
throughput robotic in situ hybridization using digoxygenin-
tagged riboprobes was then performed on all of the sections
using a probe for corticotropin-releasing hormone. The epitope-
tagged probes are visualized as a blue/purple signal through
a two-step amplification reaction involving catalytic reporter

deposition and an enzymatic colour reaction (Kerstens et al.,
1995). This approach has a level of sensitivity comparable
to that provided by radioactive labelling. A CCD camera-
equipped microscope then digitized expression data from each
tissue section using an automated stage to record the entire
section at 1.6 µm per pixel (Carson et al., 2002).

Tissue tear repair

Tears occurring during the physical slicing of the tissue tended
to form in a direction perpendicular to the slicing motion.
Slicing was performed in a bottom to top direction. Therefore,
the vast majority of tears in the coronal tissue section image
appear as horizontal tears. An example of a tissue section with
two tears is shown in Fig. 2(a). Tears dynamically stretch the
tissue above or below the tear, depending on the orientation of
the tissue during sectioning. Undoing the effects of the tear
involves reversing this stretching. The approach for fixing
tears is to first identify the area of the tear, calculate a smoothed
tear outline and then apply a repair algorithm to undo the
effects of the tear. As the dorsal–ventral orientation of the tissue
within the frozen block during sectioning may be unknown,
the tear repair algorithm brings the tissue both at the top
and bottom of the tear together. It accomplishes this by first
determining the points outlining of the top of the tear. This
outline is smoothed by calculating the average height of the
points defining the top of the tear using a running window size
of 21. The averaged outline is further smoothed by limiting
the point-wise slope to between −1 and 1. The smoothed
outline of the tear bottom is calculated by the same protocol.
Using the smoothed tear outline, each column of the image
containing the tear is modified in the following way. The
location within the tear halfway between the top of the tear
and bottom of the tear as defined by the smoothed outlines is
set as the middle of the tear for that column of the image. Then,
the image column from the top of the smoothed outline to the
top of the image is linearly stretched to occupy the pixels from

Fig. 1. Overview of automated artefact detection in a given image. After data collection and digitization, significant tears are removed from the image and
its nearest neighbouring images. Next, the neighbouring images are warped to match the shape of the image and the pixel-by-pixel intensity differences
are calculated. After applying local averaging, the intensity differences are summed and an intensity threshold is applied to indicate the areas of the image
likely to contain artefacts.
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Fig. 2. Semiautomated tear fixing. (a) Example tissue section image with two tears caused by thin cryosection production. (b) Area of tears manually
indicated in green using GUI tools: fill, draw and erase. (c) Indicated tears are automatically removed from the image using a process that dynamically
stretches the image above and below the tear to close the gap.

the middle of the tear to the top of the image. Similarly, the
image column from the bottom of the smoothed outline to the
bottom of the image is linearly stretched to occupy the pixels
from the middle of the tear to the bottom of the image.

Image registration

Our approach for detecting false positive signal artefacts in an
image relies upon locating the regions of common differences
between the image and its two neighbouring images, that
is the two images representing the tissue sections acquired
immediately previous and after the tissue section represented
in the current image. To make this comparison, nonlinear
registration was performed upon the two neighbouring images
to bring them into direct alignment with the image being
analysed. This registration process of transforming the images
to the same shape and coordinates was performed via
three steps: image preparation, rigid alignment and elastic
alignment.

Image preparation consisted of first reducing the image to
12.5% of the original size (reduced size: ∼745 × 582 pixels)
to speed up alignment calculations. Then, to remove the
effect of the image background intensity during registration,
background normalization was performed to adjust the
image background pixels to white intensity (i.e. 255). This
normalization was based on a threshold t that accounted for
90% of the pixels in the four corners of the image defined
by square regions each 50 × 50 pixels in size. To normalize
the background, the intensity of each pixel in the image was
multiplied by 255

t , then limited to a maximum new value of
255. Next, the image canvas was expanded to 1088 × 832
pixels to establish a common image size for all of the images and
prevent the interference of image boundaries during image
rotations and translations.

Rigid alignment first searched for the set of horizontal and
vertical image translations in addition to image rotations that
would best align adjacent images. Each potential alignment
was scored by minimizing the sum of pixel-to-pixel intensity

differences between the two images. The algorithm performed
the rigid transformations at multiple image scales to speed up
the search process. The rigid alignment with the minimum
score was applied.

Elastic alignment was performed using the ImageJ
(Rasband, 1997–2010) software plug-in bUnwarpJ
(Arganda-Carreras et al., 2006). bUnwarpJ calculated
and applied optimized warp transformations between rigidly
aligned images. We utilized the following bUnwarpJ settings:
registration = Accurate, image_subsample_factor = 1,
initial_deformation = Coarse, final_deformation = Very Fine,
divergence_weight = 0.1, curl_weight = 0.1, landmark_
weight = 0, image_weight = 1.0, consistency_weight = 1.0,
stop_threshold = 0.01.

Artefact detection

The strategy of automated false positive signal detection is
based upon the likelihood that an artefact, such as a dust
particle, will not appear in consecutive tissue sections in the
same place. By contrast, desirable image features, such as gene
expression, tend to appear in adjacent images. The process of
this artefact detection is illustrated with an example in Fig. 3.
Detection of artefacts in a particular image of a tissue section
from a set of series sections (Fig. 3b) relies upon the image
representing the preceding tissue section (Fig. 3a) and the
image representing the next tissue section (Fig. 3c). First,
the image registration process described earlier is applied to
register the preceding image (Fig. 3d) and the next image
(Fig. 3e) with the current image. The pixel-to-pixel absolute
intensity difference image is then calculated for the preceding
image to current image (Fig. 3f) and for the next image to
current image (Fig. 3g). These two difference images highlight
both the regions of potential artefacts in the current image
but also artefacts in the adjacent image. By summing the
two difference images (Fig. 3h), the artefacts in the current
image effectively double in intensity while artefacts in adjacent
images do not change. As a final step, a series of thresholds are
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Fig. 3. Illustrated application of automated artefact detection. (a–c) A sequential series of three images with tears already removed, with artefact detection
focused on image (b). Insets highlight the two artefacts to detect as well as example of gene expression, which should not be detected as an artefact.
(d) The image (a) elastically registered to match the shape of image (b). (e) The image (c) elastically registered to match the shape of image (b). (f) The
pixel-by-pixel absolute difference in grey-scale intensity between the images in (b) and (d). (g) The pixel-by-pixel absolute difference in intensity between
the images in (b) and (e). (h) The pixel-by-pixel intensity sum of the images in (f) and (g). (i) A binary mask indicated location of artefacts is derived from
(h) using a series of filters described in the text.

then applied to generate the binary image mask that indicates
the automatically detected artefacts in the current image
(Fig. 3i). This final step also assists in preventing false positives
caused by small cell-to-cell differences in gene expression. The
final thresholding process begins by setting intensity values of
254 and 255 to be white (i.e. 255), and intensities of 0–253 to
be black (i.e. 0). A Gaussian blur of radius 2 was then applied
using Python Image Library’s BLUR filter. This was followed
by two utilizations of MaxFilter, which replaces the pixel with
the maximum pixel intensity value in a 5 × 5 window. Finally,
a threshold was used to binarize the image by setting pixels
of intensity 50 and above to white (i.e. 1) and pixels below
50 to black (i.e. 0). White pixels in this mask indicate the
automatically detected artefacts.

Deftekt toolkit

A GUI called the Deftekt Toolkit was developed in Tk and
Python to facilitate the application of the described automated
processing steps and integrate the manual interactive
capabilities. Manual interactive capabilities for tear fixing
include the ability to indicate tear locations with standard

draw, erase and fill tools. The toolkit includes the automated
scripts for image registration that can be applied to all images
within a folder, as well as automated scripts for detecting
artefacts. The GUI allows the artefact mask to then be manually
augmented as necessary. In this way, the toolkit streamlines
the workflow for addressing any issues arising in tissue section
images.

Results

The success of the artefact detection method is illustrated
in four representative tissue section images (Fig. 4). The
original tissue sections with tissue tears already repaired
are shown in Figs 4(a)–(d) with insets highlighting all 11
tissue section artefacts of significance. These vary in size, shape
and intensity. Seven artefacts are dark, like gene expression,
and four are lighter intensity, like unexpressed tissue. Two
artefacts are small dots approximately the size of a cell body,
eight are larger circles and one is stringy. Figure 4(e)–(h)
displays in red the automatically detected artefact mask for
all four images. Also shown is the Deftekt GUI toolkit interface.
The automated detection successfully identifies all of the dark

C© 2010 Batelle Memorial Institute
Journal of Microscopy C© 2010 The Royal Microscopical Society, 241, 200–206



2 0 4 L . M . K I N D L E E T A L .

Fig. 4. Comparison of automated and manual artefact detection. (a–d) Four example tissue sections with all significant artefacts highlighted. (e–h) Red
regions indicate automatically detected artefacts for the four images, shown with the GUI interface for making modifications to the detected mask. (i–l)
Red regions have been modified in the four images to in some cases reshape artefact boundaries, remove false positives, and add additional artefact masks
where artefacts were not automatically detected. (m–p) Optional artefact mitigation step uses the artefact mask definition and a neighbouring elastically
registered image to automatically remove the artefacts from the image.

intensity artefacts including dots, circles and strings. Tissue
artefacts with light intensity are not automatically detected.
Several false positives are identified in one of the images just
outside the perimeter of the tissue (Fig. 4g) The artefact mask
is finalized through a manual process using the Deftekt GUI
tools to remove, add and/or modify the locations indicating
artefacts (Figs 4(i)–(l)). Through this approach, all significant
artefacts are indicated in the mask. The resulting images
from applying the optional tissue repair function are shown
in Figs 4(m)–(p). In these repaired images, all artefacts have
been removed without impacting gene expression or cellular
density information.

Automated steps can be run overnight for a complete
mouse brain data set (∼450 images) on a standard
desktop workstation (3Ghz dual core, 3GB RAM). Based on
performance results, using the Deftekt GUI approach would
likely reduce manpower time from 3 weeks to less than 1 week
for a complete dataset.

Discussion

We have developed and demonstrated an approach for
identifying and mitigating artefacts that can interfere with
analysis of gene expression highlighted in tissue sections. The
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approach combines automated steps and manual validation
in a toolkit to enable streamlined processing of images.
The immediate impact of this method is to decrease the
amount of time required in handling artefacts, thus enabling
more applications of in situ hybridization gene expression
in tissue sections. These applications include quantitative
analysis of gene expression both for comparison between
specimens collected under different experiments, and for
querying databases of spatial gene expression. The described
approach is not limited to mouse brain, gene expression images
or even tissue sections, but may be potentially applicable to
any serial collection of 2D images from a 3D object where
distortion can occur and individual image artefacts need to
be identified and/or removed. Limitations include that the
described tear removal approach performs best with tears
that are horizontal and smooth. Undesirable warping of the
image while fixing the tear is avoided by limiting the change
in shift from one column to the next. However, multiple tears
occurring within the same image column can increase the
distortion. Future work in this area may include an automated
tear detection algorithm. The approach and toolkit provide the
foundation for future development in the domain of artefact
detection. New algorithms that are developed can be easily
integrated into the toolkit for testing and comparison with
other approaches.

Corticotropin-releasing hormone expression patterns in
mouse brain tissue sections consist of both scattered and
regional elements, as well as both weak and strong expression
patterns. For this reason, corticotropin-releasing hormone is
a good gene to demonstrate the capability of the artefact
detection approach. Performing image registration and tear
repair prior to comparing neighbouring images results in
improved alignment both for anatomical regions and for
cell populations with corticotropin-releasing hormone expressed.
In addition, the first appearance of gene expression in an
anatomical region is not detected as an artefact because at
least one neighbour should also show that gene expression.
This is because regionalized gene expression generally extends
across multiple images. Thresholds were empirically selected
so that an artefact in a neighbouring image is not detected
as an artefact in the current image. It is possible that the
selected thresholds may be optimized further for other genes
and their expression patterns. One limitation of approach
as currently implemented is that dark artefacts are more
readily detected. However, it is the dark artefacts that are the
most important artefacts to detect because the quantification
of gene expression relies on detecting dark cell-sized
features.
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